- Home  »
- VGI - Die Zeitschrift  »
- Autor
VGI - Autor
Christian Briese
Wir haben 9 Artikel von und mit Christian Briese gefunden.
Hydrographische Vermessung des Neusiedler Sees
Kurzfassung
Die Hydrographische Vermessung basierend auf Echolot Messungen mit Einzelstrahl-Echolot, Sub-Bottom-Profiler und Seitensichtsonar, liefert die Basisdaten für die Generierung der Seeboden- und Schlammoberflächenmodelle. Vertikalprofile von der Wasser-Schlamm-Seebodensediment-Schichtung basierend auf Einzelpunktmessungen mit einem adaptierten bodenphysikalischen Messsystem diente zur Validierung der Echolot-Schallausbreitungswerte für Schlamm, zur Erfassung der Seichtwasserflächen sowie zur Beschreibung des Schlammkörpers im Schilfgürtel.
Abstract
In order to create a high resolution digital terrain model (DTM) of the lake bed, a comprehensive survey of the lake bottom and the mud layer was initiated. Hydrographic surveying methods based on acoustic echo sounding techniques provide the back bone of topographic data generation of the lake bottom and the mud layer. Acoustic echo sounding comprises side scans, single beam high and low frequency sensors. To verify the echo sounding measurements, to obtain data in areas with a water depth lower than 50 cm (where echo sounding is not applicable), and to provide data for the transition zone between the water body and the reed belt, a combination of soil physical sensors in a measuring system was introduced.
Die Hydrographische Vermessung basierend auf Echolot Messungen mit Einzelstrahl-Echolot, Sub-Bottom-Profiler und Seitensichtsonar, liefert die Basisdaten für die Generierung der Seeboden- und Schlammoberflächenmodelle. Vertikalprofile von der Wasser-Schlamm-Seebodensediment-Schichtung basierend auf Einzelpunktmessungen mit einem adaptierten bodenphysikalischen Messsystem diente zur Validierung der Echolot-Schallausbreitungswerte für Schlamm, zur Erfassung der Seichtwasserflächen sowie zur Beschreibung des Schlammkörpers im Schilfgürtel.
Abstract
In order to create a high resolution digital terrain model (DTM) of the lake bed, a comprehensive survey of the lake bottom and the mud layer was initiated. Hydrographic surveying methods based on acoustic echo sounding techniques provide the back bone of topographic data generation of the lake bottom and the mud layer. Acoustic echo sounding comprises side scans, single beam high and low frequency sensors. To verify the echo sounding measurements, to obtain data in areas with a water depth lower than 50 cm (where echo sounding is not applicable), and to provide data for the transition zone between the water body and the reed belt, a combination of soil physical sensors in a measuring system was introduced.
Keywords/Schlüsselwörter
Hydrographische Vermessung Echolotung Neusiedler See Schlammdicke Seeprofilaufbau Seebodenaufbau
Hydrographische Vermessung Echolotung Neusiedler See Schlammdicke Seeprofilaufbau Seebodenaufbau
PDF-Download
VGI_201602_Heine.pdf
VGI_201602_Heine.pdf
Vorwort
Kurzfassung
Nicht verfügbar
Abstract
Nicht verfügbar
Nicht verfügbar
Abstract
Nicht verfügbar
Keywords/Schlüsselwörter
keine
keine
PDF-Download
VGI_201305_Briese.pdf
VGI_201305_Briese.pdf
Vom Modellflughobby zu unbemannten Flugsystemen für die Geodatenerfassung
Kurzfassung
In den letzten Jahren haben die technologischen Entwicklungen im Bereich der unbemannten Luftfahrzeuge (uLFZ, engl. Unmanned aerial vehicles, UAV) zu einem vermehrten Einsatz dieser Technologie in Forschung und Entwicklung geführt. Dieser Beitrag gibt einen Überblick über den aktuellen Stand der Technik und die laufende Rechtsentwicklung zum praktischen Einsatz von UAV Systemen (engl. Unmanned aerial systems, UAS) für die Geodatenerfassung in Österreich. Darüber hinaus werden unterschiedliche Anwendungsmöglichkeiten dieser Technologie aufgezeigt. Zukünftig besitzen UAS das Potential die Datenerfassungslücke zwischen der terrestrischen Vermessung und der luftgestützten bemannten Luftfahrt zu schließen.
Abstract
Technological developments have led to a significantly increased usage of unmanned aerial vehicles (UAV) in research and development in the last years.This article provides an overview about the actual status of the UAV technology in the field of geomatics and provides actual information about the legal use of UAV in Austria. Furthermore, different application fields are discussed. In the future, UAS have the potential to close the data acquisition gap between terrestrial surveying and manned airborne data acquisition.
In den letzten Jahren haben die technologischen Entwicklungen im Bereich der unbemannten Luftfahrzeuge (uLFZ, engl. Unmanned aerial vehicles, UAV) zu einem vermehrten Einsatz dieser Technologie in Forschung und Entwicklung geführt. Dieser Beitrag gibt einen Überblick über den aktuellen Stand der Technik und die laufende Rechtsentwicklung zum praktischen Einsatz von UAV Systemen (engl. Unmanned aerial systems, UAS) für die Geodatenerfassung in Österreich. Darüber hinaus werden unterschiedliche Anwendungsmöglichkeiten dieser Technologie aufgezeigt. Zukünftig besitzen UAS das Potential die Datenerfassungslücke zwischen der terrestrischen Vermessung und der luftgestützten bemannten Luftfahrt zu schließen.
Abstract
Technological developments have led to a significantly increased usage of unmanned aerial vehicles (UAV) in research and development in the last years.This article provides an overview about the actual status of the UAV technology in the field of geomatics and provides actual information about the legal use of UAV in Austria. Furthermore, different application fields are discussed. In the future, UAS have the potential to close the data acquisition gap between terrestrial surveying and manned airborne data acquisition.
Keywords/Schlüsselwörter
Unbemannte Luftfahrzeuge unbemannte Flugsysteme Flugsteuerungssysteme Luftbild Nahbereichs-Luftbildmessung
Unbemannte Luftfahrzeuge unbemannte Flugsysteme Flugsteuerungssysteme Luftbild Nahbereichs-Luftbildmessung
PDF-Download
VGI_201306_Briese.pdf
VGI_201306_Briese.pdf
Direkte Georeferenzierung von Bildern eines unbemannten Luftfahrzeuges mit LowCost-Sensoren
Kurzfassung
Unbemannte Luftfahrzeuge können mit einer Vielzahl von unterschiedlichen Bordsensoren ausgestattet werden.Dazu zählen typischerweise ein GNSS-Empfänger, eine inertiale Messeinheit, ein Magnetometer und ein Luftdrucksensor. Diese Sensoren dienen dazu, den Piloten bei seiner Flugmission zu unterstützen und ermöglichen die Durchführung von autonomen Flügen. In diesem Beitrag wird gezeigt, dass diese Sensoren außerdem dazu verwendet werden können, um Bilder einer Kamera direkt zu georeferenzieren. Darunter versteht man die direkte Bestimmung (d.h. ohne Nutzung des Bildinhaltes) der Position (drei Koordinaten) und der Orientierung (drei Drehwinkel) der Kamera zum Aufnahmezeitpunkt der Bilder. Die Einführung dieser Beobachtungen in die Bündelblockausgleichung (integrierte Sensororientierung) vermeidet weitgehend Deformationen des Bildblockes, wie sie bei der Nutzung von nur wenigen Passpunkten auftreten können. Als Flugplattform wurde ein Multikopter, basierend auf der MikroKopter-Plattform, eingesetzt. Die Flugplattform ist als offenes System konzipiert und erlaubte somit Modifikationen, welche die Aufzeichnung der Sensorrohdaten und deren Synchronisation mit der Kamera möglich machten. Normalerweise werden für die direkte Georeferenzierung von Luftbildern nur der GNSS-Empfänger und die Sensoren der inertialen Messeinheit verwendet. Die in unbemannten Luftfahrzeugen typischerweise dafür eingesetzten MEMS-Sensoren zeichnen sich zwar durch ein geringes Gewicht aus, liefern aber nur eine geringe Messgenauigkeit. Daher ist die Erweiterung von GNSS und inertialer Messeinheit mit einem Magnetometer und einem Luftdrucksensor notwendig. Durch die Integration aller Sensoren zu einem Gesamtsystem kann damit die Genauigkeit der Positions- und Orientierungsbestimmung entscheidend verbessert werden. Die Evaluierung der vorgeschlagenen Methode zeigt, dass die Position der Bilder mit einer Präzision von ca. 0.5m (Lage) bzw. 1.0m (Höhe) bestimmt werden kann. Die Orientierungswinkel können mit einer Präzision von ca.1° (Roll und Nick) und 2° (Gier) bestimmt werden. Es kamen dazu ausschließlich die zur Flugsteuerung bereits vorhandenen Bordsensoren zum Einsatz.
Abstract
Unmanned aerial vehicles (UAV) can be equipped with a large variety of different on-board sensors.The typical UAV setup consists of a GNSS antenna with a receiver, an inertial measurement unit (IMU), a magnetometer and an air pressure sensor.These sensors allow to assist the pilot on the ground and to carry out autonomous flights.This article demonstrates that these sensors can be additionally used to directly georeference the imagery taken from the UAV platform.This results in the estimation of the position (three coordinates) and orientation (three rotation angles) of the images without the usage of the image content.The integration of these observations into a bundle block adjustment (integrated sensor orientation) avoids a deformation of the image block, as it can occur if only few control points were used. Within the practical examples, a multi-rotor system based on the MikroKopter platform was utilized.The open source character of the project allowed some minor code modification that allowed recording the raw sensor data and made the synchronisation with the camera trigger signal possible. The direct georeferencing of aerial images is typically just based on GNSS and IMU observations. Due to the low measurement quality of the utilized MEMS sensors, the additional usage of a magnetometer and an air pressure sensor is essential to support the GNSS and IMU observations. By the integration of the observations of all sensors a significant increase of accuracy and reliability of the determined positions and orientations can be achieved. The evaluation of the proposed method shows that the estimated position of the image can be determined with a precession of approx. 0.5 m (planar) and 1 m (height).The rotation angles can be determined with a precision of approx. 1° (roll and nick) and 2° (yaw).The direct georeferencing of the images of this practical test is just based on the sensor equipment that is already available on-board of the MikroKopter platform.
Unbemannte Luftfahrzeuge können mit einer Vielzahl von unterschiedlichen Bordsensoren ausgestattet werden.Dazu zählen typischerweise ein GNSS-Empfänger, eine inertiale Messeinheit, ein Magnetometer und ein Luftdrucksensor. Diese Sensoren dienen dazu, den Piloten bei seiner Flugmission zu unterstützen und ermöglichen die Durchführung von autonomen Flügen. In diesem Beitrag wird gezeigt, dass diese Sensoren außerdem dazu verwendet werden können, um Bilder einer Kamera direkt zu georeferenzieren. Darunter versteht man die direkte Bestimmung (d.h. ohne Nutzung des Bildinhaltes) der Position (drei Koordinaten) und der Orientierung (drei Drehwinkel) der Kamera zum Aufnahmezeitpunkt der Bilder. Die Einführung dieser Beobachtungen in die Bündelblockausgleichung (integrierte Sensororientierung) vermeidet weitgehend Deformationen des Bildblockes, wie sie bei der Nutzung von nur wenigen Passpunkten auftreten können. Als Flugplattform wurde ein Multikopter, basierend auf der MikroKopter-Plattform, eingesetzt. Die Flugplattform ist als offenes System konzipiert und erlaubte somit Modifikationen, welche die Aufzeichnung der Sensorrohdaten und deren Synchronisation mit der Kamera möglich machten. Normalerweise werden für die direkte Georeferenzierung von Luftbildern nur der GNSS-Empfänger und die Sensoren der inertialen Messeinheit verwendet. Die in unbemannten Luftfahrzeugen typischerweise dafür eingesetzten MEMS-Sensoren zeichnen sich zwar durch ein geringes Gewicht aus, liefern aber nur eine geringe Messgenauigkeit. Daher ist die Erweiterung von GNSS und inertialer Messeinheit mit einem Magnetometer und einem Luftdrucksensor notwendig. Durch die Integration aller Sensoren zu einem Gesamtsystem kann damit die Genauigkeit der Positions- und Orientierungsbestimmung entscheidend verbessert werden. Die Evaluierung der vorgeschlagenen Methode zeigt, dass die Position der Bilder mit einer Präzision von ca. 0.5m (Lage) bzw. 1.0m (Höhe) bestimmt werden kann. Die Orientierungswinkel können mit einer Präzision von ca.1° (Roll und Nick) und 2° (Gier) bestimmt werden. Es kamen dazu ausschließlich die zur Flugsteuerung bereits vorhandenen Bordsensoren zum Einsatz.
Abstract
Unmanned aerial vehicles (UAV) can be equipped with a large variety of different on-board sensors.The typical UAV setup consists of a GNSS antenna with a receiver, an inertial measurement unit (IMU), a magnetometer and an air pressure sensor.These sensors allow to assist the pilot on the ground and to carry out autonomous flights.This article demonstrates that these sensors can be additionally used to directly georeference the imagery taken from the UAV platform.This results in the estimation of the position (three coordinates) and orientation (three rotation angles) of the images without the usage of the image content.The integration of these observations into a bundle block adjustment (integrated sensor orientation) avoids a deformation of the image block, as it can occur if only few control points were used. Within the practical examples, a multi-rotor system based on the MikroKopter platform was utilized.The open source character of the project allowed some minor code modification that allowed recording the raw sensor data and made the synchronisation with the camera trigger signal possible. The direct georeferencing of aerial images is typically just based on GNSS and IMU observations. Due to the low measurement quality of the utilized MEMS sensors, the additional usage of a magnetometer and an air pressure sensor is essential to support the GNSS and IMU observations. By the integration of the observations of all sensors a significant increase of accuracy and reliability of the determined positions and orientations can be achieved. The evaluation of the proposed method shows that the estimated position of the image can be determined with a precession of approx. 0.5 m (planar) and 1 m (height).The rotation angles can be determined with a precision of approx. 1° (roll and nick) and 2° (yaw).The direct georeferencing of the images of this practical test is just based on the sensor equipment that is already available on-board of the MikroKopter platform.
PDF-Download
VGI_201307_Glira.pdf
VGI_201307_Glira.pdf
Transformation von GNSS-Höhen in österreichische Gebrauchshöhen mittels einer Transformationsfläche (Höhen-Grid)
Kurzfassung
Der Einsatz von globalen Navigationssatellitensystemen (engl.: Global Navigation Satellite System – GNSS) für Positionierungsaufgaben führt zu Beobachtungen und resultierenden Positionen in Bezug zu einem globalen Koordinatenrahmen. In der Praxis sind oftmals Koordinaten und Höhen im lokalen österreichischen Koordinatenrahmen MGI gefordert. Für hohe Genauigkeitsanforderungen lässt sich diese Aufgabe nicht mit einem einzelnen für ganz Österreich gültigen Parametersatz für eine räumliche Ähnlichkeitstransformation (7-Parameter) lösen. Daher werden in der Praxis typischerweise lokale Transformationsparametersätze eingesetzt. Bei großen Projektgebieten und entsprechend hohen Genauigkeitsanforderungen kann die Anwendung eines einzelnen lokalen Parametersatzes jedoch nicht ausreichend sein. Dieser Fall tritt z.B. bei der großflächigen Erfassung von Airborne Laserscanning (ALS) Daten auf. Um eine Aneiderreihung von Transformationsparametersätzen und die damit auftretenden Unstetigkeitsstellen an den Transformationsgrenzen zu vermeiden steht für die Lagetransformation von ETRS89 nach Gauß-Krüger (MGI) ein österreichweites Transformationsgitter (GIS-Grid basierend auf der ntv2-Definition) zur Verfügung. Im Rahmen dieser Publikation wird nun ein weiteres österreichweites Transformationsgitter (Höhen-Grid) für die Transformation der Höhenkomponente vorgestellt. Nach einer Zusammenfassung der unterschiedlichen für Österreich relevanten Höhensysteme wird im Rahmen dieses Artikels auf die praktische Realisierung der Bezugssysteme in Österreich eingegangen. Anschließend wird die Ableitung der Höhen-Transformationsfläche (Höhen-Grid) beschrieben. Neben dem Höhen-Grid aus Nivellement und Schweremessungen wird auch noch auf ein Alternativmodell (abgeleitet aus GNSS-Beobachtungen) eingegangen. Weiters werden die Lage-und Höhen-Transformationsergebnisse für einige Testbereiche vorgestellt und diskutiert. Es wird außerdem auf die für die Praxis relevanten Korrekturwerte zwischen Transformationsergebnissen, basierend auf dem Höhen-Grid und der Gebrauchshöhe der Triangulierungspunkte, eingegangen. Eine abschließende Zusammenfassung beinhaltet Hinweise und Empfehlungen für die praktische Anwendung.
Abstract
The application of global navigation satellite systems (GNSS) leads to observations and resulting positions in respect to a global coordinate frame. However, within practical tasks coordinates in the local Austrian coordinate frame MGI are often essential. For applications with a high accuracy demand the application of one countrywide set of 7 parameters for a spatial similarity transformation between the global and local Austrian coordinate frame is not suf.cient.Therefore, there is a need to use a local set of transformation parameters within practical applications of high accuracy demand. For big project areas and high accuracy requirements the application of one parameter set might not be suf.cient. The large area acquisition of Airborne Laser Scanning (ALS) data is one example for an insuf.cient solution based on just one transformation parameter set. In order to avoid the need for a sequence of spatially separated transformation parameter sets and the resulting discontinuities on the transformation boundaries a countrywide transformation grid (GIS-grid based on the ntv2 format de.nition) that allows the planar transformation from ETRS89 to the Austrian Gauß-Krüger (MGI) coordinate frame is available for the whole country of Austria. Within this paper a further transformation grid (Height-grid) for the transformation of the height component is introduced. After a short summary about the relevant Austrian height systems this article presents an overview about the practical realisation of the Austrian co-ordinate frames. Subsequently, the determination of the Austrian Height-grid based on levelling and gravity measurements is introduced. Next to the Height-grid an alternative model based on GNSS observations is discussed. Furthermore, practical planar and height transformation results based on the transformation grids are presented and analysed. A separate section focuses on correction values between the transformation results based on the Height-grid and the conventional heights in Austria (heights in use) listed in the point descriptions of the Austrian triangulation points. A .nal summary provides details and recommendations for the practical application of the transformation grids.
Der Einsatz von globalen Navigationssatellitensystemen (engl.: Global Navigation Satellite System – GNSS) für Positionierungsaufgaben führt zu Beobachtungen und resultierenden Positionen in Bezug zu einem globalen Koordinatenrahmen. In der Praxis sind oftmals Koordinaten und Höhen im lokalen österreichischen Koordinatenrahmen MGI gefordert. Für hohe Genauigkeitsanforderungen lässt sich diese Aufgabe nicht mit einem einzelnen für ganz Österreich gültigen Parametersatz für eine räumliche Ähnlichkeitstransformation (7-Parameter) lösen. Daher werden in der Praxis typischerweise lokale Transformationsparametersätze eingesetzt. Bei großen Projektgebieten und entsprechend hohen Genauigkeitsanforderungen kann die Anwendung eines einzelnen lokalen Parametersatzes jedoch nicht ausreichend sein. Dieser Fall tritt z.B. bei der großflächigen Erfassung von Airborne Laserscanning (ALS) Daten auf. Um eine Aneiderreihung von Transformationsparametersätzen und die damit auftretenden Unstetigkeitsstellen an den Transformationsgrenzen zu vermeiden steht für die Lagetransformation von ETRS89 nach Gauß-Krüger (MGI) ein österreichweites Transformationsgitter (GIS-Grid basierend auf der ntv2-Definition) zur Verfügung. Im Rahmen dieser Publikation wird nun ein weiteres österreichweites Transformationsgitter (Höhen-Grid) für die Transformation der Höhenkomponente vorgestellt. Nach einer Zusammenfassung der unterschiedlichen für Österreich relevanten Höhensysteme wird im Rahmen dieses Artikels auf die praktische Realisierung der Bezugssysteme in Österreich eingegangen. Anschließend wird die Ableitung der Höhen-Transformationsfläche (Höhen-Grid) beschrieben. Neben dem Höhen-Grid aus Nivellement und Schweremessungen wird auch noch auf ein Alternativmodell (abgeleitet aus GNSS-Beobachtungen) eingegangen. Weiters werden die Lage-und Höhen-Transformationsergebnisse für einige Testbereiche vorgestellt und diskutiert. Es wird außerdem auf die für die Praxis relevanten Korrekturwerte zwischen Transformationsergebnissen, basierend auf dem Höhen-Grid und der Gebrauchshöhe der Triangulierungspunkte, eingegangen. Eine abschließende Zusammenfassung beinhaltet Hinweise und Empfehlungen für die praktische Anwendung.
Abstract
The application of global navigation satellite systems (GNSS) leads to observations and resulting positions in respect to a global coordinate frame. However, within practical tasks coordinates in the local Austrian coordinate frame MGI are often essential. For applications with a high accuracy demand the application of one countrywide set of 7 parameters for a spatial similarity transformation between the global and local Austrian coordinate frame is not suf.cient.Therefore, there is a need to use a local set of transformation parameters within practical applications of high accuracy demand. For big project areas and high accuracy requirements the application of one parameter set might not be suf.cient. The large area acquisition of Airborne Laser Scanning (ALS) data is one example for an insuf.cient solution based on just one transformation parameter set. In order to avoid the need for a sequence of spatially separated transformation parameter sets and the resulting discontinuities on the transformation boundaries a countrywide transformation grid (GIS-grid based on the ntv2 format de.nition) that allows the planar transformation from ETRS89 to the Austrian Gauß-Krüger (MGI) coordinate frame is available for the whole country of Austria. Within this paper a further transformation grid (Height-grid) for the transformation of the height component is introduced. After a short summary about the relevant Austrian height systems this article presents an overview about the practical realisation of the Austrian co-ordinate frames. Subsequently, the determination of the Austrian Height-grid based on levelling and gravity measurements is introduced. Next to the Height-grid an alternative model based on GNSS observations is discussed. Furthermore, practical planar and height transformation results based on the transformation grids are presented and analysed. A separate section focuses on correction values between the transformation results based on the Height-grid and the conventional heights in Austria (heights in use) listed in the point descriptions of the Austrian triangulation points. A .nal summary provides details and recommendations for the practical application of the transformation grids.
PDF-Download
VGI_201127_Briese.pdf
VGI_201127_Briese.pdf
Der Laserstrahl und seine Interaktion mit der Erdoberfläche
Kurzfassung
Flugzeuggestützte Laserscanner wurden bisher hauptsächlich für die Erfassung der Topographie eingesetzt, doch auch in anderen Bereichen wie der Forstwirtschaft und Stadtplanung hat diese Technik ein großes Potential. Mit der zunehmenden Leistungsfähigkeit der Laserscanner und dem breiter werdenden Anwendungsfeld wird es immer wichtiger, sowohl die geometrischen als auch die physikalischen Aspekte des Messprozesses genau zu verstehen. Da es im deutschsprachigem Raum bisher kaum Literatur gibt, die sich dem Thema von der physikalischen Seite nähert, werden in diesem Aufsatz das physikalische Messprinzip und die wichtigsten theoretischen Grundlagen (Radargleichung, Streuquerschnitt, Impulsform) des Laserscannings diskutiert. Die in diesem Artikel vorstellten Konzepte sind unter Beachtung unterschiedlicher Systemparameter auch auf terrestrische Laserscanner anwendbar.
Abstract
Airborne laser scanners have so far predomitly been used for measuring the Earth’s topography. But this technology has also a huge potential in other application fields such as forestry or urban planning. With the increasing technical capacity of laser scanners and the broadening field of applications, it becomes more and more important not only to consider the geometric but also the physical aspects of the measurement process. Since there is hardly any German literature available that approaches the subject from a physical point of view, this paper discusses the physical measurement process and the most important theoretical concepts (radar equation, scattering coefficient, waveform) of airborne laser scanning. Under consideration of different sensor characteristics these concepts are also valid for terrestrial laser scanners.
Flugzeuggestützte Laserscanner wurden bisher hauptsächlich für die Erfassung der Topographie eingesetzt, doch auch in anderen Bereichen wie der Forstwirtschaft und Stadtplanung hat diese Technik ein großes Potential. Mit der zunehmenden Leistungsfähigkeit der Laserscanner und dem breiter werdenden Anwendungsfeld wird es immer wichtiger, sowohl die geometrischen als auch die physikalischen Aspekte des Messprozesses genau zu verstehen. Da es im deutschsprachigem Raum bisher kaum Literatur gibt, die sich dem Thema von der physikalischen Seite nähert, werden in diesem Aufsatz das physikalische Messprinzip und die wichtigsten theoretischen Grundlagen (Radargleichung, Streuquerschnitt, Impulsform) des Laserscannings diskutiert. Die in diesem Artikel vorstellten Konzepte sind unter Beachtung unterschiedlicher Systemparameter auch auf terrestrische Laserscanner anwendbar.
Abstract
Airborne laser scanners have so far predomitly been used for measuring the Earth’s topography. But this technology has also a huge potential in other application fields such as forestry or urban planning. With the increasing technical capacity of laser scanners and the broadening field of applications, it becomes more and more important not only to consider the geometric but also the physical aspects of the measurement process. Since there is hardly any German literature available that approaches the subject from a physical point of view, this paper discusses the physical measurement process and the most important theoretical concepts (radar equation, scattering coefficient, waveform) of airborne laser scanning. Under consideration of different sensor characteristics these concepts are also valid for terrestrial laser scanners.
Keywords/Schlüsselwörter
keine
keine
PDF-Download
VGI_200329_Wagner.pdf
VGI_200329_Wagner.pdf
Vergleich digitaler Geländemodelle aus Photogrammetrie und Laserscanning
Kurzfassung
Digitale Geländemodelle wurden lange Zeit ausschließlich aus manuellen photogrammetrischen Auswertungen oder terrestrischen Messungen abgeleitet. Im letzten Jahrzehnt änderte sich die Situation durch das Aufkommen des Laserscannings und durch digitale Methoden in der Photogrammetrie. Der Vorteil dieser beiden neuen Methoden liegt in einem deutlich höheren Automatisierungsgrad im Rahmen der Datenaufnahme. Zudem liefern beide Methoden eine sehr große Anzahl von Oberflächenpunkten, wodurch eine detaillierte Beschreibung der Geländeoberfläche ermöglicht wird. Zur Geländemodellerstellung ist es allerdings im Gegensatz zu den manuellen Datenerfassungsmethoden notwendig, eine Klassifizierung der Punkte in Boden- und Nicht-Bodenpunkte durchzuführen. Dieser Beitrag ist dem Vergleich digitaler Geländemodelle aus der manuellen sowie digitalen Photogrammetrie und dem flugzeuggetragenen Laserscanning gewidmet. Neben einer Analyse der unterschiedlichen Daten, zum Beispiel mit Punkdichtekarten, werden die aus diesen Daten abgeleiteten Geländemodelle untersucht. Die Datenbasis für diese Untersuchung bietet ein Projektgebiet im Pulkautal, in dem sowohl ein photogrammetrischer Bildflug als auch eine Laserscannerbefliegung zur Verfügung stehen. In einem abschließenden Kapitel werden die Vor- und Nachteile der unterschiedlichen Aufnahmemethoden zusammengefasst.
Abstract
Digital terrain models have been derived from manual photogrammetric or terrestrial measurements for a long time. In the last decade this situation has changed because of the appearance of other capable methods. On one hand airborne laserscanning was introduced as a suitable method for point determination, whereas on the other hand digital methods were developed in photogrammetry. The big advantage of these two methods is the high level of automation. Additionally, they provide a great number of points whereby a detailed description of the terrain is possible. A classification of the automated generated point cloud into terrain points and off terrain points is essential for the determination of terrain models. This is contrary to the manual methods of data capturing. This paper focuses on the comparison of digital terrain models derived from manual and digital photogrammetry as well as from airborne laserscanning. Beneath the analysis of the different data sets, for example with the help of point density maps, the terrain models derived from these different data are investigated. The basis data of this examination is given by photogrametric and airborne laser scanner missions within the project area Pulkautal. Finally the advantages and disadvantages of the different data capture methods are summarised.
Digitale Geländemodelle wurden lange Zeit ausschließlich aus manuellen photogrammetrischen Auswertungen oder terrestrischen Messungen abgeleitet. Im letzten Jahrzehnt änderte sich die Situation durch das Aufkommen des Laserscannings und durch digitale Methoden in der Photogrammetrie. Der Vorteil dieser beiden neuen Methoden liegt in einem deutlich höheren Automatisierungsgrad im Rahmen der Datenaufnahme. Zudem liefern beide Methoden eine sehr große Anzahl von Oberflächenpunkten, wodurch eine detaillierte Beschreibung der Geländeoberfläche ermöglicht wird. Zur Geländemodellerstellung ist es allerdings im Gegensatz zu den manuellen Datenerfassungsmethoden notwendig, eine Klassifizierung der Punkte in Boden- und Nicht-Bodenpunkte durchzuführen. Dieser Beitrag ist dem Vergleich digitaler Geländemodelle aus der manuellen sowie digitalen Photogrammetrie und dem flugzeuggetragenen Laserscanning gewidmet. Neben einer Analyse der unterschiedlichen Daten, zum Beispiel mit Punkdichtekarten, werden die aus diesen Daten abgeleiteten Geländemodelle untersucht. Die Datenbasis für diese Untersuchung bietet ein Projektgebiet im Pulkautal, in dem sowohl ein photogrammetrischer Bildflug als auch eine Laserscannerbefliegung zur Verfügung stehen. In einem abschließenden Kapitel werden die Vor- und Nachteile der unterschiedlichen Aufnahmemethoden zusammengefasst.
Abstract
Digital terrain models have been derived from manual photogrammetric or terrestrial measurements for a long time. In the last decade this situation has changed because of the appearance of other capable methods. On one hand airborne laserscanning was introduced as a suitable method for point determination, whereas on the other hand digital methods were developed in photogrammetry. The big advantage of these two methods is the high level of automation. Additionally, they provide a great number of points whereby a detailed description of the terrain is possible. A classification of the automated generated point cloud into terrain points and off terrain points is essential for the determination of terrain models. This is contrary to the manual methods of data capturing. This paper focuses on the comparison of digital terrain models derived from manual and digital photogrammetry as well as from airborne laserscanning. Beneath the analysis of the different data sets, for example with the help of point density maps, the terrain models derived from these different data are investigated. The basis data of this examination is given by photogrametric and airborne laser scanner missions within the project area Pulkautal. Finally the advantages and disadvantages of the different data capture methods are summarised.
Keywords/Schlüsselwörter
keine
keine
PDF-Download
VGI_200334_Attwenger.pdf
VGI_200334_Attwenger.pdf
Modellierung terrestrischer Laserscanner-Daten am Beispiel der Marc-Anton-Plastik
Kurzfassung
Sowohl die (Nahbereichs-)Photogrammetrie als auch das terrestrische Laserscanning dienen zur Aufnahme von Objekten im Nahbereich, wobei jede der beiden Technologien ihre Stärken und Schwächen aufweist. Deshalb liegt es nahe, Photogrammetrie und Laserscanning kombiniert einzusetzen, um die Stärken beider Aufnahmemethoden nützen zu können. Ein Pilotprojekt war die hybride Aufnahme der Marc-Anton-Plastik (Secession, Wien). Der erste Schwerpunkt dieses Artikels umfasst die gemeinsame Orientierung von terrestrischen Laserscanner-Aufnahmen (Riegl LMS-Z360) und digitalen Photos (Kodak DCS 460c) über signalisierte Verknüpfungspunkte mittels einer simultanen, hybriden Ausgleichung. Den zweiten Schwerpunkt bildet die geometrische 3D-Modellierung (Triangulierung, NURBS-Flächen) der Objektoberfläche basierend auf den Laserscanner-Daten. Den Abschluss bildet ein Ausblick auf das Potential von Photos hinsichtlich Verfeinerung der Modellierung und Erstellung eines 3D-Photomodells.
Abstract
(Close-range) photogrammetry and terrestrial laser scanning are well-suited methods for the surveying of close-range objects, whereas each of these methods has its individual advantages and drawbacks. So, it seems reasonable to combine photogrammetry and laser scanning in order to use the strengths of both methods. One pilot scheme was the hybrid acquisition of the "Marc-Anton"-Sculpture (city of Vienna). The first main focus of this article contains the simultaneous orientation of terrestrial laser scanner data (Riegl LMS-Z360) and digital photographs (Kodak DCS 460c) using signalised tie points, determined by simultaneous hybrid adjustment. The second main focus is the geometric 3-D modelling (triangulation, NURBS) of the objects surface based on the laser scanner data. Finally, there is an outlook regarding the potential of photographs in the context of improving the modelling and creation of a 3-D photo model.
Sowohl die (Nahbereichs-)Photogrammetrie als auch das terrestrische Laserscanning dienen zur Aufnahme von Objekten im Nahbereich, wobei jede der beiden Technologien ihre Stärken und Schwächen aufweist. Deshalb liegt es nahe, Photogrammetrie und Laserscanning kombiniert einzusetzen, um die Stärken beider Aufnahmemethoden nützen zu können. Ein Pilotprojekt war die hybride Aufnahme der Marc-Anton-Plastik (Secession, Wien). Der erste Schwerpunkt dieses Artikels umfasst die gemeinsame Orientierung von terrestrischen Laserscanner-Aufnahmen (Riegl LMS-Z360) und digitalen Photos (Kodak DCS 460c) über signalisierte Verknüpfungspunkte mittels einer simultanen, hybriden Ausgleichung. Den zweiten Schwerpunkt bildet die geometrische 3D-Modellierung (Triangulierung, NURBS-Flächen) der Objektoberfläche basierend auf den Laserscanner-Daten. Den Abschluss bildet ein Ausblick auf das Potential von Photos hinsichtlich Verfeinerung der Modellierung und Erstellung eines 3D-Photomodells.
Abstract
(Close-range) photogrammetry and terrestrial laser scanning are well-suited methods for the surveying of close-range objects, whereas each of these methods has its individual advantages and drawbacks. So, it seems reasonable to combine photogrammetry and laser scanning in order to use the strengths of both methods. One pilot scheme was the hybrid acquisition of the "Marc-Anton"-Sculpture (city of Vienna). The first main focus of this article contains the simultaneous orientation of terrestrial laser scanner data (Riegl LMS-Z360) and digital photographs (Kodak DCS 460c) using signalised tie points, determined by simultaneous hybrid adjustment. The second main focus is the geometric 3-D modelling (triangulation, NURBS) of the objects surface based on the laser scanner data. Finally, there is an outlook regarding the potential of photographs in the context of improving the modelling and creation of a 3-D photo model.
Keywords/Schlüsselwörter
keine
keine
PDF-Download
VGI_200336_Haring.pdf
VGI_200336_Haring.pdf
Digitale Geländemodelle im Stadtgebiet aus Laser-Scanner-Daten
Kurzfassung
Laser-Scanning ist eine Aufnahmetechnik zur Erfassung topographischer Daten und ist für viele Anwendungsbereiche interessant. In diesem Artikel wird neben einer kurzen Beschreibung der Aufnahmetechnik (mit dem Schwerpunkt Distanzmessung) auf die Filterung und Klassifizierung von Laser-Scanner-Daten zur Erstellung eines digitalen Geländemodells (DGMs) im Stadtgebiet eingegangen. Die hierfür entwickelte Methode - die hierarchische iterative robuste lineare Prädiktion - wird vorgestellt. Dieser vom Groben ins Feine arbeitende Algorithmus bewirkt neben einer Verringerung der Rechenzeit eine Stärkung in der Robustheit der Auswertung. Anhand eines Projekts im Stadtgebiet von Wien (3. Bezirk) wird auf die Genauigkeit des mit dieser Methode berechneten DGMs eingegangen. Den Abschluss bildet ein kurzer Ausblick auf zukünftige Anwendungsmöglichkeiten von Laser-Scanner-Daten.
Abstract
Laser scanning is a widely used technique for obtaining topographic information for a lot of interesting applications. Following the introduction, we will describe in this article the measurement system in section 2. The emphasis is laid on the distance measurement of this data acquisition method. Next, the data of a small laser scanning project in the 3rd district of Vienna are presented. Using the data of this project, the filtering and classification of laser scanner data for the determination of a digital terrain model (DTM) with iterative robust linear prediction in a hierarchical fashion are explained (section 4). This coarse-to-fine approach makes the method more robust and decreases computation time. The final DTM describes the ground, trees, cars, houses and other urban objects are eliminated. The results for the test data set are shown, an accuracy analysis in included. Finally, a short outlook treats future applications of laser scanning.
Laser-Scanning ist eine Aufnahmetechnik zur Erfassung topographischer Daten und ist für viele Anwendungsbereiche interessant. In diesem Artikel wird neben einer kurzen Beschreibung der Aufnahmetechnik (mit dem Schwerpunkt Distanzmessung) auf die Filterung und Klassifizierung von Laser-Scanner-Daten zur Erstellung eines digitalen Geländemodells (DGMs) im Stadtgebiet eingegangen. Die hierfür entwickelte Methode - die hierarchische iterative robuste lineare Prädiktion - wird vorgestellt. Dieser vom Groben ins Feine arbeitende Algorithmus bewirkt neben einer Verringerung der Rechenzeit eine Stärkung in der Robustheit der Auswertung. Anhand eines Projekts im Stadtgebiet von Wien (3. Bezirk) wird auf die Genauigkeit des mit dieser Methode berechneten DGMs eingegangen. Den Abschluss bildet ein kurzer Ausblick auf zukünftige Anwendungsmöglichkeiten von Laser-Scanner-Daten.
Abstract
Laser scanning is a widely used technique for obtaining topographic information for a lot of interesting applications. Following the introduction, we will describe in this article the measurement system in section 2. The emphasis is laid on the distance measurement of this data acquisition method. Next, the data of a small laser scanning project in the 3rd district of Vienna are presented. Using the data of this project, the filtering and classification of laser scanner data for the determination of a digital terrain model (DTM) with iterative robust linear prediction in a hierarchical fashion are explained (section 4). This coarse-to-fine approach makes the method more robust and decreases computation time. The final DTM describes the ground, trees, cars, houses and other urban objects are eliminated. The results for the test data set are shown, an accuracy analysis in included. Finally, a short outlook treats future applications of laser scanning.
Keywords/Schlüsselwörter
keine
keine
PDF-Download
VGI_200107_Briese.pdf
VGI_200107_Briese.pdf