Paper-ID: VGI_199440

Der Einfluß periodischer Massenverlagerungen auf geodätische Meßgrößen

Werner Daxinger¹

¹ Institut für Theoretische Geodäsie und Geophysik, Abteilung Theoretische Geodäsie, Technische Universität Wien, Gußhausstraße 27-29, A-1040 Wien

VGI – Österreichische Zeitschrift für Vermessung und Geoinformation **82** (3), S. 252–263

1994

BibT_EX:

```
@ARTICLE{Daxinger_VGI_199440,
Title = {Der Einflu{\ss} periodischer Massenverlagerungen auf geod{\"a}tische
Me{\ss}gr{\"o}{\ss}en},
Author = {Daxinger, Werner},
Journal = {VGI -- {\"O}sterreichische Zeitschrift f{\"u}r Vermessung und
Geoinformation},
Pages = {252--263},
Number = {3},
Year = {1994},
Volume = {82}
}
```


Der Einfluß periodischer Massenverlagerungen auf geodätische Meßgrößen

Werner Daxinger, Wien

Zusammenfassung

Moderne Meßmittel gestatten es dem Geodäten heute, effizient in Genauigkeitsbereiche vorzudringen, die vor wenigen Jahren nicht oder nur mit höchstem Einsatz und Zeitaufwand erreichbar waren. Je präzisere Instrumente zur Verfügung stehen, umso bedeutsamer wird es, die physikalischen Modelle auf ihre Vollständigkeit hin zu überprüfen und bisher vernachlässigte Einflüsse zu berücksichtigen.

Abstract

Nowadays modern measuring instruments make it possible for a geodesist to come up to a high degree of accurracy economically, which was either impossible to obtain or could only be achieved by supreme effort and sacrifice of time a few years ago. Using these precise instruments calls for scrutinizing the underlying physical models and taking hitherto unconsidered influences into account.

1. Einleitung

Für das praktische Vermessungswesen ist das Schwerefeld der Erde von wesentlich größerer Bedeutung als allgemein angenommen. Schon beim Aufstellen eines Theodolits bringt man durch Einspielen der Libellen die Stehachse mit der Lotlinie zur Deckung. Die Richtungsmessung erfolgt in der Tangentialebene an die Niveaufläche durch den Gerätemittelpunkt und wird erst durch anschließende Reduktionen auf ein Rotationsellipsoid bezogen. Eine Verlagerung von Massen führt zu einer Veränderung des lokalen Schwerefeldes und somit auch zur Beeinflussung geodätischer Meßgrößen.

Als Beispiel für eine künstliche Massenverlagerung wird das Kaunertalkraftwerk der Tiroler Wasserkraftwerke AG (TIWAG) herangezogen. Das Kaunertal liegt am Westrand der Ötztaler Alpen und zweigt bei Prutz (ca. 11 km flußaufwärts von Landeck) vom Inntal ab. Die Talweitung des "Mandarfenbodens" ganz hinten im Kaunertal ermöglichte die Anlage eines Speicherbeckens mit fast 140 Mio m³ Nutzinhalt (Abb. 1). Das Stauziel des Gepatschspeichers liegt auf 1767 m, das Absenkziel auf 1665 m Seehöhe. Das rund 6 km lange Staubecken wird durch einen 630 m langen Steinschüttdamm mit zentralem Dichtungskern abgeschlossen. Die Dammkrone liegt rund 130 m über der Talsohle und maximal 153 m über dem Felsuntergrund. Zur Bauzeit (1961-1965) war das Kaunertalkraftwerk das größte Speicherkraftwerk Österreichs und noch heute ist der Gepatschdamm der höchste geschüttete Damm. Durch den

Staubetrieb kommt es zu einer periodischen Einflußnahme auf das lokale Schwerefeld und somit auch zu einer Beeinträchtigung der gemessenen Richtungen, Seiten, Zenitdistanzen und der nivellitisch bestimmten Höhenunterschiede.

1.1 Kontrollvermessungen der TIWAG

Rund um den Gepatschspeicher werden zur Erfassung vorhandener Deformationen laufend Kontrollvermessungen von der TIWAG durchgeführt.Beiderseits des Stausees existiert je eine Nivellementlinie. Die Linie "Uferstraße Ost" wird monatlich mit einem Wild NA2000 Nivellier und technischer Codelatte beobachtet. Die Festpunkte für die Uferstraßennivellements liegen in geologisch stabilen Zonen südlich des Kaisertalbaches (Punkt 3441) bzw. Wurmetalbaches (Punkt 3049), sowie im Sondierstollen an der Uferstraße West (Abb. 1). Diese Festpunkte werden in Abständen von fünf Jahren durch ein Präzisionsnivellement auf ihre Stabilität geprüft.

Vor Baubeginn wurde ein Präzisionsnivellement von Prutz bis zur Stauwurzel geführt, von dem nur mehr ein einziger Punkt (NK33 beim Sperrenhaus) in Gepatsch vorhanden ist; von diesem Punkt wurden alle Höhen abgeleitet.

Zusätzlich zu den Nivellements wird jährlich zur Überprüfung von Kontrollpunkten in den Talflanken ein Netz im Bereich des Speichers beobachtet. Der Beobachtungstermin fällt jeweils in das Frühjahr, sodaß infolge der jährlichen Periodizität des vorhandenen Stauvolumens keine

Reduktionen wegen Massenunterschieden an die Meßdaten angebracht werden müssen.

Auf der Dammkrone befindet sich ein motorisierter Theodolit, dessen Koordinaten über Anschlußpunkte laufend ermittelt werden (wegen der durch unterschiedliche Stauniveaus hervorgerufenen Dammbewegungen ändern sich die Koordinaten) und von dem aus dann instabil angenommene Punkte kontrolliert werden.

2. Theoretische Grundlagen

2.1 Gravitation

Ursache der allgemeinen Massen-Die anziehung, die Körper aufeinander ausüben, liegt in der schweren Masse. Nach dem Newtonschen Gravitationsgesetz ziehen sich zwei Punktmassen mit einer Kraft an, die proportional dem Produkt der beiden Punktmassen und umgekehrt proportional dem Quadrat des Abstandes ist. Diese Kraft wirkt in der Verbindungslinie der beiden Punkte, G wird als Newtonsche Gravitationskonstante bezeichnet und hat im SI-System den Wert 6.67259 10⁻¹¹ m³ kg⁻¹s⁻² (Torge, 1989). Obwohl die Attraktion von beiden Massen ausgeht, bezeichnet man die eine als die angezogene und die andere als anziehende. Der Einfachheit halber setzt man die angezogene Masse gleich der Einheitsmasse und bezeichnet die anziehende Masse mit m. Die Beziehung

$$F = G \frac{m}{l^2}$$
[1]

liefert die Kraft, die von einer Masse m auf die Einheitsmasse im Abstand I ausgeübt wird. Sie wird durch einen Vektor <u>F</u> Equation mit dem Betrag F dargestellt.

Es ist offensichtlich, daß die Massenanziehung vieler Punktmassen durch die Vektorsumme der Einzelattraktionen dargestellt werden kann. Um diese Summe zu berechnen, zerlegt man die einzelnen Vektoren in ihre Komponenten entlang der drei Koordinatenachsen. Der resultierende Kraftvektor setzt sich aus den algebraischen Summen der Einzelkomponenten entlang der drei Achsen zusammen. Betrachtet man *n* Punktmassen m_i , so sind F_x , F_y , F_z die Komponenten der resultierenden Anziehung dieser Massen auf die Einheitsmasse:

$$F_{x} = -G \sum_{i=1}^{n} m_{i} \frac{x - \xi_{i}}{l^{3}}, \quad F_{y} = -G \sum_{i=1}^{n} m_{i} \frac{y - \eta_{i}}{l^{3}},$$

$$F_{2} = -G \sum_{i=1}^{n} m_{i} \frac{z - \zeta_{i}}{l^{3}}.$$
[2]

Darin bezeichnen (*x*, *y*,*z*) die Koordinaten des Aufpunktes und (ξ , η , ζ) die des laufenden Massenelementes.

Sind nun die Punktmassen stetig in einem Volumen ν mit der Dichte ρ verteilt, so wird diese Summe zu einem Integral

$$F_{x} = -G \iiint_{\nu} \frac{x-\zeta}{l^{3}} \rho \, d\nu, \, F_{y} = -G \iiint_{\nu} \frac{y-\eta}{l^{3}} \rho \, d\nu,$$

$$F_{z} = -G \iiint_{\nu} \frac{z-\zeta}{l^{3}} \rho \, d\nu, \qquad [3]$$

worin das Volumselement durch $dv = d\xi \, d\eta \, d\zeta$ gebildet wird; dies ist der Grund für die Dreifachintegrale.

2.2 Der Quader

Im vorigen Abschnitt wurde die Vorgangsweise bei der Berechnung der Attraktion eines beliebigen, kontinuierlich mit Masse erfüllten Körpers skizziert. Im folgenden werden geschlossene Ausdrücke für die Komponenten der Attraktion des Quaders (= ein vierseitiges, rechtwinkeliges Prisma) angegeben.

Die Achsen des Koordinatensystems werden parallel den Kanten des Quaders angenommen, und zwar x und y horizontal und z nach unten positiv (Figur 1).

Mit dem Massenelement

 $dm = \rho d\xi d\eta d\zeta$

ergibt sich die Attraktion des Quaders in x-Richtung nach Beziehung [3]

$$F_{x} = -G\rho \int_{z_{1}}^{z_{2}y_{2},x_{1}} \int_{(\sqrt{(x-\zeta)^{2} + (y-\eta)^{2} + (z-\zeta)^{2}})^{3}}^{z_{2}y_{2},x_{1}} \left(\sqrt{(x-\zeta)^{2} + (y-\eta)^{2} + (z-\zeta)^{2}} \right)^{3}.$$
 [4]

Legt man den Aufpunkt in den Koordinatenursprung, so vereinfacht sich obiger Ausdruck. Da die Integration aufwendig und langwierig ist, wird hier nur das Ergebnis angegeben (Mader, 1951):

$$F_{x} = -G\rho \left[-x_{2} \arctan \frac{y_{2}z_{2}}{(x_{2}\sqrt{x_{2}^{2}+y_{2}^{2}+z_{2}^{2}})} + y_{2} \ln (z_{2}+\sqrt{x_{2}^{2}+y_{2}^{2}+z_{2}^{2}}) + z_{2} \ln (y_{2}+\sqrt{x_{2}^{2}+y_{2}^{2}+z_{2}^{2}}) - (x_{1}y_{2}z_{2}) - (x_{2}y_{2}z_{1}) + (x_{1}y_{2}z_{1}) - (x_{2}y_{1}z_{2}) + (x_{1}y_{1}z_{2}) + (x_{2}y_{1}z_{1}) - (x_{1}y_{1}z_{1})\right].$$
[5]

Die Klammernsymbole bedeuten, daß der gesamte vorausgehende explizite Ausdruck für die in der jeweiligen Klammer stehenden Koordinaten erneut zu berechnen ist.

Durch zyklische Vertauschung gewinnt man daraus die Attraktion in y-Richtung:

$$F_{y} = -G\rho \left[-y_{2} \arctan \frac{x_{2}z_{2}}{(y_{2}\sqrt{x_{2}^{2}+y_{2}^{2}+z_{2}^{2}}} + x_{2} \ln (z_{2} + \sqrt{x_{2}^{2}+y_{2}^{2}+z_{2}^{2}}) + z_{2} \ln (x_{2} + \sqrt{x_{2}^{2}+y_{2}^{2}+z_{2}^{2}}) - (x_{1}y_{2}z_{2}) - \dots\right]$$

$$\left[6\right]$$

2.3 Lotabweichung und Lotstörung

Die Lotabweichung ist der Winkel zwischen der Richtung des Schwerevektors und der Ellipsoidnormalen in einem Punkt. Im allgemeinen wird die Lotabweichung in eine Nord-Süd- und eine Ost-West Komponente zerlegt. Geodätische Meßgrößen sind bei höheren Genauigkeitsanforderungen (vor allem im Gebirge) wegen Lotabweichung zu korrigieren. Unter der Lotstörung $d\Theta$ versteht man die von lokalen Masseneinflüssen verursachten Anteile der Lotabweichung. Näheres zur Theorie und praktischen Bestimmung der Lotabweichung und Lotstörung entnehme man der Literatur (Helmert, 1880; Ledersteger, 1969).

In den folgenden Kapiteln dieser Arbeit werden unter anderem die Einflüsse von Massenverlagerungen auf die Richtung des Schwerkraftvektors behandelt. Im Falle des Gepatschspeichers handelt es sich dabei um periodisch auftretende Störungen. Somit weicht der in der vorliegenden Arbeit verwendete Begriff der Lotstörung von der in der Literatur üblichen Definition ab.

Für die Nord-Süd Komponente $d\xi$ und die Ost-West Komponente $d\eta$ der Lotstörung gilt: $d\xi = d\Theta \cos v \ d\eta = d\Theta \sin v \ d\Theta^2 = d\xi^2 + d\eta^2$, [7] worin v der Richtungswinkel der Lotstörung ist.

Die Komponente $d\varepsilon$ der Lotstörung $d\Theta$ in einem vorgegebenen Richtungswinkel *t* geht aus Figur 2 hervor:

 $d\varepsilon = d\Theta \cos(t - v) = d\xi \cos t + d\eta \sin t.$ [8]

Die durch die Attraktionswirkung einzelner Massenelemente hervorgerufene Lotstörung berechnet man mit dem Schwerewert g im Aufpunkt aus:

$$\delta\Theta^2 = \left(-\frac{F_x}{g}\right)^2 + \left(-\frac{F_y}{g}\right)^2.$$
[9]

Die Komponenten von $d\Theta$ entlang der Koordinatenachsen folgen aus den Beziehungen [7]:

$$\delta \xi'' = -\frac{\mathsf{F}_x}{g} \rho'' \quad \delta \eta'' = \frac{\mathsf{F}_y}{g} \rho''.$$
 [10]

3. Berechnung des Geländemodells

Für die Bestimmung des Einflusses der periodischen Massenverlagerungen wird ein Ge-

ländemodell benötigt. Zur Datengewinnung wurden die 10m-Schichtenlinien eines von der TI-WAG bereitgestellten Höhenplanes digitalisiert. Dieser Höhenplan lag im Maßstab 1:5000 vor und gibt die Topographie des Stauraumes zur Bauzeit bis zu einer Höhe von 1800 m wieder. Die Äquidistanz der Schichtenlinien beträgt 2 m. Die Digitalisierung erfolgte auf der Anlage "Numonics AccuGrid" (Präzisionsausführung, Genauigkeit laut Hersteller: +0.125 mm) der Abteilung Theoretische Geodäsie, wobei rund 52000 Punkte registriert wurden. Aus diesen Lagepunkten mit zugehörigem Höhenwert wurde ein digitales Geländemodell mit einer Rasterweite von 20 m in x und v erzeuat. Die Ausdehnung des Rasters in Nord-Süd Richtung beträgt 5860 m und in Ost-West Richtung 1060 m, woraus sich $294 \times 54 = 15876$ Rasterpunkte ergeben.

Aus dem 20 m \times 20 m Raster wurden durch Mittelbildung der Höhen von jeweils vier Rasterpunkten die Höhen der Quadergrundflächen berechnet. Die einheitliche Höhe der Quaderdeckflächen ergibt sich aus der angenommenen Stauhöhe. Nach den Beziehungen [5] und [6] lassen sich nun Attraktionen in Richtung *x*- und *y*-Achse und die Komponenten der Lotstörung des betrachteten Quaders bezüglich eines Aufpunktes errechnen. Für die Berechnung der Gesamtwirkung der Wassermassen sind die algebraischen Summen der Einflüsse der einzelnen Quader zu bilden.

4. Der Einfluß auf das reine Nivellementergebnis

Die Summe $\Sigma \delta h$ des geometrischen Nivellements wird als reines Nivellementergebnis bezeichnet. Darin ist δh der aus der Differenz zweier Lattenablesungen ("Rückblick minus Vorblick") gebildete Höhenunterschied der Lattenstandpunkte. Zum Unterschied von Potentialdifferenzen ist das reine Nivellementergebnis vom Weg abhängig. Spezielle Erläuterungen der Grundkonzeption der verschiedenen Höhensysteme (dynamisches und orthometrisches) entnehme man der Literatur (Heiskanen-Moritz, 1967; Ledersteger, 1969).

Im Kaunertal werden technische Nivellements und Präzisionsnivellements durchgeführt (siehe Einleitung), beide jedoch ohne begleitende Schweremessungen. Demnach sind die erzielten Ergebnisse vom Fortschreitungsweg abhängig. Es soll nun die rein aus dem Staubetrieb resultierende Wegabhängigkeit untersucht werden. Da mit den Nivellements Hebungen und Senkungen von Kontrollpunkten erfaßt werden, ist der koordinative Verlauf der Linien genähert bekannt.

Anhand Figur 3 erkennt man den Einfluß einer Störmasse auf die Messungen in einem einzigen Standpunkt. Mit dem in S aufgestellten Nivellier wird der Höhenunterschied δh_{12} der beiden Geländepunkte 1 und 2 bestimmt. Die in der Figur durchgezogene Visierlinie ist die Tangente an die ungestörte Niveaufläche und schließt daher mit der ungestörten Lotlinie einen rechten Winkel ein. Bei Abwesenheit einer Störmasse erhält man also die Lattenlesungen LE1 und LE2 und daraus den Höhenunterschied

$$\delta h_{12} = LE1 - LE2.$$
^[11]

Befindet sich nun eine zuvor nicht vorhandene Masse (Störmasse, z.B.: Stausee) in der näheren Umgebung, so verändert diese augenblicklich das lokale Schwerefeld. Die Niveau-

VGI 3/94

Auf in die Zukunft!

GHDB

KM

GEONAM

ТМ

Nenn Sie weitere Informationen wünschen Anruf oder Fax genügen. Nir senden sie Ihnen gerne zu.

3EV Krotenthallergasse 3, 1080 Wien Tel.: 0222/43 89 35 Kl. 464, Fax: 43 99 92 flächen werden durch das zusätzliche Potential gehoben und der Schwerkraftvektor ändert seine Richtung, womit sich auch die Ziellinie des Nivelliers ändert (strichliert dargestellt). Die in der Richtung *t* der Visur wirksame Komponente $\delta_{\mathcal{E}}$ der Lotstörung wird nach Formel [8] berechnet. Die Tangente an die nun durch den Gerätemittelpunkt verlaufende Äquipotentialfläche (andere Niveaufläche als im ungestörten Zustand) liefert die Lattenlesungen *LE*1^s und *LE*2^s. Im gestörten Schwerefeld gilt:

$$\delta h_{12}{}^{\rm s} = LE1{}^{\rm s} - LE2{}^{\rm s}.$$
 [12]

Wie in Figur 3 ersichtlich ist, errechnet sich die Differenz der Höhenunterschiede zu

$$\Delta \delta h = \delta h_{12} - \delta h_{12}^{s} = s \, \delta \varepsilon, \qquad [13]$$

worin s die doppelte Zielweite (= Abstand der Latten) ist. Diese Beziehung beschreibt den Einfluß einer Störmasse auf das reine Nivellementergebnis einer Aufstellung. Für die Auswirkung einer Störmasse auf einen Nivellementzug mit nGerätestandpunkten und der Zielweite $s_i/2$ ist die algebraische Summe der Einzeleinflüsse zu bilden:

$$\sum_{i=1}^{n} \delta h_{i} - \sum_{i=1}^{n} \delta h_{i}^{s} = \sum_{i=1}^{n} s_{i} \delta \varepsilon_{i}.$$
 [14]

Für die Nivellementlinie "Uferstraße Ost" sind nur die Koordinaten der Kontrollpunkte bekannt. Die $\delta \varepsilon_i$ werden daher für je zwei dieser Kontrollpunkte gerechnet (Tabelle 1), gemittelt und mit dem Abstand der Punkte multipliziert:

$$\Delta \delta h_{ij} = -\frac{\delta \varepsilon_{ij} - \delta \varepsilon_{ji}}{2} s_{ij}.$$
 [15]

(Das negative Vorzeichen in obiger Beziehung folgt aus $t_{ij} = t_{ji} \pm 200^9$).

Dabei wird das zwischen Stau- und Absenkziel liegende Volumen berücksichtigt. Die Punktnummer der Bolzen entspricht der Stationierung, wobei der NK33 der Ausgangspunkt dieser Linie ist. Anfangspunkt (1), Endpunkt (3049) und diverse Zwischenpunkte dieses Nivellementzuges wurden in Abb. 1 eingetragen.

Aus Tabelle 1 geht ein einigermaßen stetiger Verlauf für die Komponenten der Lotstörung hervor, es müssen daher keine Zwischenpunkte eingerechnet werden. Die $\delta\eta$ -Komponente beträgt in fast allen Punkten ein Vielfaches der $\delta\xi$ -Komponente. Da die Uferstraße und somit die Nivellementlinie in Nord-Süd Richtung verläuft, werden die Lattenablesungen nur gering durch die Lotstörung beeinflußt. Einen wesentlich stärkeren Effekt würde man bei einem Ost-West-Nivellementzug erhalten, weil die in dieser Richtung liegenden $\delta \boldsymbol{\varepsilon}\text{-Werte}$ bedeutend größer wären.

Der maximale Gesamteinfluß von -0.36 mm (siehe Tabelle 1) liegt weit unter der mit dem Wild NA2000 (die Standardabweichung für 1 km Doppelnivellement beträgt +1.5 mm) erreichbaren Genauigkeit für ein Nivellement dieser Länge (1.5 $\sqrt{3} = \pm 2.60$ mm). Für ein Präzisionsnivellement ergibt sich in der Praxis ein mittlerer Kilometerfehler (Doppelnivellement) von +0.3 bis +0.4 mm. Daraus folgt der mittlere Fehler für ein 3 km langes Präzisionsnivellement zu ±0.52 bzw. ±0.69 mm. Laut Angaben aus Firmenprospekten (Wild N3, Jenoptik NI 002, Zeiss Ni 1) läßt sich sogar ein mittlerer Kilometerfehler (Doppelnivellement) von ±0.2 mm erzielen, dies ergibt für die betrachtete Nivellementlinie ± 0.35 mm. Der durch die Massenverlagerungen verursachte SVstematische Fehler beträgt in jedem Fall mehr als 50% des zufälligen Fehlers eines Präzisionsnivellements dieser Länge. Es ist daher ratsam, neben dem Schleifenschluß auch diesen systematischen Einfluß bei der Ausgleichung und beim Vergleich von Epochen zu berücksichtigen.

Würde man von einem außerhalb des Einflußgebietes gelegenen Anfangspunkt (rund 5 km nördlich des Dammes auf der Mautstraße) ein Nivellement bis zum Punkt 3049 durchführen, so erhielte man eine Differenz zwischen dem bei Hoch- und Niederstau gemessenen Höhen-unterschied von $\Sigma\Delta\delta h = -1.09$ mm. Die Genauigkeit eines Präzisionsnivellements (Doppelnivellement) dieser Länge beträgt bestenfalls ± 0.57 mm.

Die äußere Genauigkeit der einzelnen $\Delta \delta h_{ij}$ liegt bei ± 0.002 mm, woraus sich die Genauigkeit für die Gesamtsumme $\Sigma \Delta \delta h$ (-0.36 mm, siehe Tabelle 1) zu ± 0.01 mm ergibt.

Der Einfluß auf das reine Nivellementergebnis $\Sigma \Delta \delta h$ wurde aus einer Anzahl diskreter $\delta \varepsilon$ -Werte, die außerdem nicht mit den tatsächlich vorherrschenden Schwerewerten, sondern mit einem konstanten, willkürlich angenommenen Wert von $q = 9.80 \text{ ms}^{-2}$ berechnet wurden, ermittelt. Zudem sind die Visurlinien nur Tangenten an die Niveauflächen und bei Punktabständen bis zu 300 m werden Unterschiede in den Krümmungsverhältnissen der Äguipotentialflächen bereits wirksam. Da die Berechnung der Einflußgrößen in einem dreidimensionalen, kartesischen Koordiantensystem erfolgte, wurde die Konvergenz der Lotlinien vernachläßigt. Trotz all dieser Abweichungen von der strengen Theorie harmonieren die erzielten Ergebnisse außer-

von	nach	s in m	t in gon	$\delta arepsilon_{ m ij}$ in $^{ m cc}$	$\delta \varepsilon_{ji}$ in cc	$\Delta \delta h_{ m ij}$ in mm	$\Sigma\Delta\delta h$
1	62	65.65	180.952	-0.552	0.520	-0.055	-0.06
62	93	31.27	193.351	-0.662	0.678	-0.033	-0.09
93	123	29.98	189.870	-0.634	0.628	-0.030	-0.12
123	157	31.73	166.336	-0.235	0.163	-0.010	-0.13
157	266	109.40	186.409	-0.491	0.320	-0.070	-0.20
266	333	67.79	189.633	-0.376	0.298	-0.036	-0.23
333	376	42.73	203.741	-0.540	0.533	-0.036	-0.27
376	389	13.38	147.342	0.536	-0.514	0.011	-0.26
389	494	87.74	178.147	-0.046	-0.043	-0.000	-0.26
494	522	25.45	232.740	-0.802	0.841	-0.033	-0.29
522	523	7.44	309.881	-1.078	1.128	-0.013	-0.30
523	561	44.43	185.534	-0.050	0.026	-0.003	-0.31
561	582	20.93	188.746	-0.086	0.069	-0.003	-0.31
582	621	38.70	189.757	-0.088	0.048	-0.004	-0.31
621	675	54.01	198.750	-0.212	0.153	-0.016	-0.33
675	721	47.34	218.255	-0.493	0.484	-0.036	-0.37
721	772	49.66	202.282	-0.193	0.189	-0.015	-0.38
772	841	68.04	202.536	-0.194	0.214	-0.022	-0.40
841	904	60.86	183.379	0.156	-0.118	0.013	-0.39
904	999	95.49	182.756	0.130	-0.165	0.022	-0.37
999	1038	39.07	178.512	0.242	-0.276	0.016	-0.35
1038	1145	105.27	194.818	-0.016	-0.159	0.012	-0.34
1145	1201	54.76	226.141	-0.381	0.321	-0.030	-0.37
1201	1235	35.78	218.795	-0.189	0.152	-0.010	-0.38
1235	1299	93.00	208.811	0.031	-0.059	0.007	-0.37
1299	1372	41.67	210.157	0.037	-0.049	0.003	-0.37
1372	1430	87.46	218.114	-0.081	0.103	-0.013	-0.38
1430	1529	94.16	206.522	0.079	-0.013	0.007	-0.38
1529	1570	41.33	183.011	0.369	-0.340	0.023	-0.35
1570	1712	131.80	211.663	-0.063	0.037	-0.010	-0.36
1712	1845	132.68	205.265	0.052	0.084	-0.003	-0.37
1845	1930	92.84	176.543	0.286	-0.212	0.036	-0.33
1930	2239	310.57	197.849	-0.036	0.134	-0.041	-0.37
2239	2350	106.59	190.951	-0.039	0.055	-0.008	-0.38
2350	2468	117.31	191.416	-0.062	0.112	-0.016	-0.39
2468	2626	153.21	188.950	-0.077	0.133	-0.025	-0.42
2626	2866	156.80	193.795	-0.213	0.198	-0.051	-0.47
2866	3049	178.92	167.035	0.363	-0.409	0.108	-0.36

Tabelle 1: Operat Gepatsch, Nivellementlinie "Uferstraße Ost" Stauniveau: 1767 m Absenkziel: 1665 m Volumen: 137.4 Mio m³, Einfluß auf das reine Nivellementergebnis

ordentlich gut, was sowohl auf den kurzen Nivellementzug als auch auf den geringen Höhenunterschied zurückzuführen ist.

5. Beeinträchtigung von Richtung, Seite, Zenitdistanz

Nimmt man das Absenkziel wieder als Bezugsniveau, so ändert sich infolge zusätzlich aufgestauter Wassermassen neben dem Betrag auch die Richtung des lokalen Schwerkraftvektors. Diese Änderung kann als ein operativer Stehachsfehler betrachtet werden und wirkt auf gemessene Richtungen und Zenitdistanzen. Mit den in Kapitel 2.3 angeführten Bezeichnungen erhält man für die Korrektur der Richtungen

$$\begin{aligned} R_{\mathsf{k}} &= R_{\mathsf{m}} + \delta \Theta \sin(t_{\sigma \Theta} - t) \cot z_{\mathsf{m}} = \\ R_{\mathsf{m}} - (\delta \xi \sin t - \delta \eta \cos t) \cot z_{\mathsf{m}}, \end{aligned} \tag{16}$$

und für die Korrektur der Zenitdistanzen

$$z_{k} = z_{m} + \delta \varepsilon = z_{m} + (\delta \xi \cos t + \delta \eta \sin t).$$
 [17]

Die Indices k und m stehen für korrigiert bzw. gemessen. Wie man aus den Formeln erkennt,

bleiben Richtungen unbeeinflußt, wenn die Korrektur der Zenitdistanzen maximal ist und umgekehrt, was auch der Anschauung entspricht.

Durch obige Beziehungen werden lediglich die durch den Staubetrieb (Lotstörungen) hervorgerufenen Änderungen der Meßwerte erfaßt; Refraktionskorrektur, Korrektur wegen zeitlich invarianter Lotabweichung und die Richtungsreduktion bleiben unberücksichtigt.

Die Streckenreduktion für Distanzen bis 10 km erfolgt nach (Benz-Rinner, 1966):

$$s_{\rm GK} = (1 + \frac{y_{\rm m}^2}{2R^2}) \sqrt{\frac{s_{\rm s}^2 - \Delta h^2}{(1 + \frac{H_{\rm s}}{R})(1 + \frac{H_{\rm s} + \Delta h}{R})}}, [18]$$
$$\Delta h = s_{\rm s} \cos z + \frac{s_{\rm s}^2}{2R} (\sin^2 z - k_{\rm G} \sin z),$$

- s_{GK} Streckenlänge in der Gauß-Krüger Projektion,
- ss in der Natur gemessene, meteorologischinstrumentell und auf die Bodenpunkte reduzierte Schrägdistanz,
- H_S Höhe des Standpunktes über der Bezugsfläche (Undulation in Gepatsch ca. 3.0 m),
- Δh trigonometrischer Höhenunterschied zwischen Stand- und Zielpunkt,
- $k_{\rm G}$ Gauß'scher Refraktionskoeffizient (0.13),
- ym mittlere Ordinate der Streckenendpunkte,
- z auf die Bodenpunkte reduzierte Zenitdistanz.

Die Änderung der reduzierten Strecken durch die Wassermassen erhält man, indem man die Streckenreduktion mit und ohne den Einfluß der Lotstörung auf die Meßwerte durchrechnet und vergleicht.

Das von der TIWAG zur Verfügung gestellte Beobachtungsprotokoll enthält die Meßwerte des servogesteuerten Theodoliten auf der Dammkrone. Standpunkt, Zielpunkte und Visurstrahlen wurden in Abb. 1 eingetragen. Da eine Reduktion der Zenitdistanzen auf die Bodenpunkte und eine meteorologisch-instrumentelle Reduktion der gemessenen Strecken wegen der fehlenden Parameter nicht möglich war, werden die Meßwerte direkt in Formel [18] eingesetzt. Für die Größenordnung der Einflüsse ist dies ohne Bedeutung.

Die Tabellen 2 und 3 geben die Auswirkungen des Nutzinhaltes des Speichers auf die Meßgrößen der Totalstation und die Strecken in der Projektion wieder. Die Ergebnisse zeigen eine geringe Beeinträchtigung der Meßwerte (max. 0.5^{cc} bei Richtungen, max. 1.3^{cc} bei Zenitdistanzen) und der reduzierten Strecken (max. 0.6 mm). Andere Einflußgrößen, wie Refraktion oder die Meteorologie einer sowohl über Wasser als auch über Land verlaufenden Visur sind sicher mit größerer Unsicherheit behaftet. Die Einflüsse sind also für technische Vermessungen zu vernachlässigen.

Wird iedoch ein Präzisionsnetz höchster Genauigkeit (angestrebte Punktlagegenauigkeit +2 mm) mit großem Aufwand (Meteorologie, wiederholte Lotabweichung. Satzmessung. Präzisionsdistanzer) im Bereich des Speichers zu verschiedenen Zeitpunkten (und somit bei verschiedenen Stauniveaus) beobachtet, so wäre eine Reduktion wegen Lotstörung angebracht. Eine einmalige Ermittlung der Lotabweichung reicht bei Kenntnis der Lotstörung aus, um in allen Epochen Lotabweichungen berechnen zu können. In obigen Tabellen finden sich nur die Meßwerte des Servotheodoliten. von denen lediglich eine Visur nahe der Richtung der Lotstörung $\delta \Theta$ liegt, und diese verläuft fast horizontal; bei Visuren zwischen Netzpunkten quer über den Stausee wäre dies öfter der Fall und die Einflüsse können bei Zenitdistanzen von 70^g bis zu 0.8^{cc} für Richtungen, 1.5^{cc} für Zenitdistanzen und 1 mm für Seiten betragen.

6. Resumee

Die vorliegende Arbeit soll die unterschiedlichen Grundkonzepte von Lage und Höhe verdeutlichen: Die Lage am Ellipsoid ist rein geometrisch definiert und bleibt – bei Einhaltung der strengen Theorie bei der Reduktion der Meßgrößen – von Massenverlagerungen unbeeinflußt.

Die Höhe ist physikalischen Ursprungs und ändert sich sehr wohl infolge von Massenverlagerungen.

In der Praxis wird der Differenzwinkel zwischen der Lotlinie und der Ellipsoidnormalen im Standpunkt bei der Reduktion meist vernachlässigt und daher werden von der momentanen Topographie abhängige Beobachtungen in die Berechnung eingeführt, wie dies auch in Gepatsch der Fall ist. Folglich sind auch Lagebe-Änderungen ziehungen den des lokalen Schwerefeldes unterworfen. Hat man die Auswirkungen einer vorliegenden Massenverlagerung zu untersuchen, so sind vorerst die betrachteten Massen durch Quader und Prismen grob anzunähern (Prismen sind in Abb. 1

Sie wünschen

ein maßgeschneidertes Konzept für die systematische Erfassung geographischer Daten in Ihrer Gemeinde

GIS-Station

eine langfristige Betreuung in GIS-Angelegenheiten mit Ausbaumöglichkeiten bis zum kommunalen Info-System

von der Beratung über die Datenerfassung und ständige Aktualisierung bis zum Aufbau einer eigenen GIS-Station

Das geographische für Gemeinden, Planer und Ziviltechniker

Geographisches Informationssystem der SBL-Stadtbetriebe Linz GesmbH, Zentralsekretariat / Geographische Anwendungen, Gruberstraße 40 - 42, A-4020 Linz, Telefon: (0 73 2) 78 90-418, Telefax: (0 73 2) 78 90-754

von	$\delta\eta$ in"	$\delta \xi$ in"	$\delta\eta$ in ^{cc}	$\delta \xi$ in ^{cc}
303	-0.136	0.404	-0.421	1.248

nach	t in gon	$\delta \varepsilon$ in ^{cc}	δR in ^{cc}	z _m in gon	z _k in gon	R _m in gon	R_k in gon
1	223.1287	-1.017	0.029	97.8241	97.82400	364.9505	364.95050
5	210.3772	-1.163	0.011	98.8215	98.82138	352.2012	352.20120
8	167.7406	-1.295	-0.009	97.6911	97.69097	309.5614	309.56140
40	58.3797	0.425	-0.010	99.4782	99.47824	200.2041	200.20410
42	130.4379	-0.948	-0.031	97.8754	97.87531	272.2617	272.26170
304	345.9901	1.141	0.008	99.2630	99.26311	87.8151	87.81510
2118	81.3090	-0.042	-0.062	97.0228	97.02280	223.1346	223.13459
2120	151.7988	-1.196	-0.107	87.7595	87.75938	293.6246	293.62459
2122	140.1274	-1.075	-0.239	80.6187	80.61859	281.9523	281.95228
2124	150.9762	-1.189	0.003	100.3546	100.35448	292.8004	292.80040
2231	231.7321	-0.895	0.255	83.5444	83.54431	373.5544	373.55443
2233	243.9565	-0.694	0.404	77.9246	77.92453	385.7808	385.78084
2235	244.9110	-0.677	0.465	75.1530	75.15293	386.7349	386.73495
2237	240.5136	-0.753	0.009	99.4716	99.47152	382.3383	382.33830

nach	s _s in m	z_1 in gon	z_2 in gon	s _{GK1} in m	s _{GK2} in m
1	454.143	97.8241	97.82400	453.75571	453.75569
5	721.490	98.8215	98.82138	721.17265	721.17262
8	875.211	97.6911	97.69097	874.39837	874.39831
40	454.809	99.4782	99.47824	454.67231	454.67231
42	418.220	97.8754	97.87531	417.87491	417.87489
304	11.011	99.2630	99.26311	11.00733	11.00733
2118	312.401	97.0228	97.02280	311.97563	311.97563
2120	973.901	87.7595	87.75938	955.67368	955.67333
2122	1149.083	80.6187	80.61859	1095.89513	1095.89453
2124	545.371	100.3546	100.35448	545.21749	545.21749
2231	904.668	83.5444	83.54431	874.35083	874.35050
2233	1127.709	77.9246	77.92453	1060.24425	1060.24383
2235	1383.266	75.1530	75.15293	1278.80017	1278.79959
2237	369.144	99.4716	99.47152	369.03269	369.03269

Tabellen 2 und 3

eingetragen) und damit ist die Dimension der Einflußgrößen abzuschätzen. Liegen die Störgrößen im Bereich der Meßgenauigkeit der verwendeten Instrumente oder darüber, so ist deren exakte Bestimmung mit Hilfe eines digitalen Geländemodells notwendig, um Epochenvergleiche durchführen zu können. Der Einfluß auf die Lage kann beim geodätischen Netz in Gepatsch unberücksichtigt bleiben, da dort nur technische Genauigkeit angestrebt wird.

Anders verhält es sich bei der Höhenbestimmung: Die Differenz eines bei Hoch- und

Niederstau ermittelten Höhenunterschiedes wird beim Präzisionsnivellement, welches in Abständen von fünf Jahren zur Stabilitätskontrolle der Höhenfestpunkte duchgeführt wird, spürbar. Da rund um den Gepatschspeicher das reine Nivellementergebnis (ohne Schweremessungen) zur Erfassung der vertikalen Geländedeformationen verwendet wird, wurde der wegabhängige Einfluß auf die Nivellementlinie "Uferstraße Ost" berechnet. Die Ausführungen lassen somit erkennen, daß die von derartigen Massenverlagerungen hervorgerufenen Attraktionen Meßgrößen merklich beeinflussen

und in Abhängigkeit von der Aufgabenstellung zu berücksichtigen sind.

Literatur

- Benz, F., und Rinner, K.: "Die Entfernungsmessung mit elektro-magnetischen Wellen und ihre geodätische Anwendung", JEK, Band VI, Handbuch der Vermessungskunde, J.B. Metzlersche Verlagsbuchhandlung, Stuttgart, 1966.
- [2] Bretterbauer, K.: "Das lokale Schwerefeld des Glocknergebietes", Institutsmitteilungen, Heft 7, Institut für Geodäsie der Universität Innsbruck, S. 27–37, Innsbruck, 1984.
- [3] Heiskanen, W.A., and Moritz, H.: "Physical Geodesy", W.H. Freeman and Company, San Francisco and London, 1967.
- [4] Helmert F.R.: "Die mathematischen und physikalischen Theorien der höheren Geodäsie", Teil 1, B.G. Teubner, Leipzig, 1880 (Nachdruck 1962).
- [5] Ledersteger K.: "Astronomische und physikalische Geodäsie (Erdmessung)", JEK, Band V, Handbuch der Vermessungskunde, J.B. Metzlersche Verlagsbuchhandlung, Stuttgart, 1969.
- [6] MacMillan, W.D.: "The Theory of the Potential", Dover Publications, New York, 1930 (Reprint 1958).

- [7] Mader, K.: "Das Newtonsche Raumpotential prismatischer Körper und seine Ableitungen bis zur dritten Ordnung", Österreichische Zeitschrift für Vermessungswesen, Sonder-heft 11, Wien, 1951.
- [8] Mader, K.: "Topographisch berechnete partielle Geoidhebungen", Österreichische Zeitschrift für Vermessungswesen, Sonderheft 21, S. 14–33, Wien, 1960.
- [9] Tiroler Wasserkraftwerke AG: Betriebszeitung, Hefte 21, 22, 24.
- [10] Tiroler Wasserkraftwerke AG: Informationsbroschüre, Innsbruck, 1966, 1988.
- [11] Torge, W.: "Gravimetry", Walter de Gruyter, Berlin-New York, 1989.

Quellennachweis: Abb. 1: vervielfältigt mit Genehmigung des Bundesamtes für Eich- und Vermessungswesen (Landesaufnahme) in Wien, ZL. L 70144/94.

Anschrift des Verfassers:

Daxinger Werner, Dipl.-Ing. Institut für Theoretische Geodäsie und Geophysik Abteilung Theoretische Geodäsie Technische Universität Wien Gußhausstraße 27– 29 A-1040 Wien

Dissertationen und Diplomarbeiten

Eignung eines kommerziellen GIS für einen modernen Liegenschaftskataster

Werner Kladnik

Diplomarbeit: Institut f. Landesvermessung und Geoinformation, TU Wien, 1994. Begutachter: o. Univ.-Prof. Dipl.-Ing. Dr. A. Frank. Mitbetreuer: V. Ass. Dipl.-Ing. Dr. W. Kuhn

Der Kataster ist seit jeher eine Domäne der Geodäten. Geographische Informationssysteme stellen für den Geodäten ein relativ neues Werkzeug dar. Die Bewertung der Nützlichkeit und Anwendbarkeit des neuen Werkzeuges für bestehende Aufgaben hat, nicht zuletzt wegen der hohen Kosten von Geographischen Informationssystemen, große Bedeutung. In dieser Arbeit wird die prinzipielle Anwendbarkeit eines kommerziellen GIS für den österreichischen Liegenschaftskataster untersucht. Die Eignung des GIS wird an den vorhandenen Funktionen gemessen.

Das Vorgehen gliedert sich grob in zwei Abschnitte. Zuerst werden die Anforderungen an das Werkzeug definiert. Im zweiten Abschnitt wird dann die Funktionalität des GIS an den Anforderungen gemessen. Die Anforderungen werden durch einen Aufgabenkatalog repräsentiert. Um diesen Aufgabenkatalog zu erhalten, werden die Nutzer des Katasters identifiziert und die von ihnen verwendeten und erzeugten Informationsprodukte angegeben. Die zur Erzeugung der Informationsprodukte zu erfüllenden Aufgaben werden geordnet in einem Aufgabenkatalog zusammengefaßt.

Im zweiten Abschnitt wird zuerst die verwendete Software, MGE Parcel Manager, vorgestellt. Die im er-

sten Abschnitt gefundenen Aufgaben werden dann mit den vorhandenen Funktionen theoretisch gelöst. Dieser theoretischen Lösung schließt sich ein praktischer Test der wichtigsten Funktionen an. MGE Parcel Manager stellt einen technischen gelungenen Schritt zur effizienten Verwaltung eines modernen Liegenschaftskatasters dar. Die Erweiterung des Programmsystems zur Verwaltung mehrerer Themen und die stärkere Einbindung der Abfrage in die Funktionalität von MGE Parcel Manager werden angeregt. Von den vorliegenden Ergebnissen werden Impulse für eine umfassende Evaluation unter Einbeziehung wirtschaftlicher und organisatorischer Fragen erhofft.

Visualisierung von Oberflächen und Oberflächenveränderungen mit dem Softwarepaket IDL (Interactive Data Language)

Johann Klimpfinger

Diplomarbeit: Institut f. Photogrammetrie und Fernerkundung, TU Wien, 1993. Begutachter: o. Prof. Dr. Dr. K. Kraus. Betreuer: V. Ass. Dipl.-Ing. G. Forkert, Univ. Ass. Dr.Dipl.-Ing. H. Kager

Mit Hilfe des Softwarepakets IDL (Interactive Data Language) sollte auf einem PC 486 eine Applikation programmiert werden, welche interaktiv den geometrischen Vergleich einer durch Operation in ihrer Form veränderten Gesichtoberfläche mit dem ursprünglichen Zustand ermöglicht. Die durch photogrammetrische Messungen erfaßten, mittels Paßpunkten in ein identisches Koordinatensystem transformierten Stützpunkte