- Home  »
- VGI - Die Zeitschrift  »
- Keyword
VGI - Autor
grace
Wir haben 3 Artikel über grace gefunden.
Bestimmung von Schwerefeldlösungen aus der Satellitenmission GRACE am Institut für Geodäsie der Technischen Universität Graz
Kurzfassung
Das Schwerefeld der Erde und seine zeitliche Änderung stellen wichtige Beobachtungsgrößen in der Erforschung des dynamischen Systems Erde dar. Die Satellitenmission GRACE (Gravity Recovery And Climate Experiment) wurden entwickelt, um ebendiese zeitlichen Variationen und den langwelligen Anteil des Erdschwerefeldes erstmals mit globaler Überdeckung hochgenau zu erfassen. Das Institut für Geodäsie an der Technischen Universität Graz prozessiert die Rohdaten der GRACE-Mission und stellt monatliche, tägliche und statische Schwerefeldlösungen für die wissenschaftliche Gemeinschaft zur Verfügung. Die in Graz berechneten Schwerefeldmodelle wurden unter anderem im Rahmen der Climate Change Initiative (CCI) der Europäischen Weltraumorganisation (ESA) verwendet, um Massenbilanzen der Eisschilde von Grönland und der Antarktis zu bestimmen. Als Teil der Gravity Observation Combination (GOCO) Initiative steuert Graz hochauflösende GRACE-Modelle für die Kombination mit weiteren Schwerefeldmissionen wie GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) und terrestrischen Daten bei. Tägliche Lösungen aus Graz werden zum Beispiel in der Erforschung großer Hochwasserereignisse verwendet. Dieser Beitrag gibt einen Überblick über die Prozessierungskette der GRACE-Schwerefeldbestimmung, beginnend bei der Datenvorprozessierung, über die Bestimmung von kinematischen Satellitenorbits aus GPS Beobachtungen sowie der Verbesserung der gemessenen Satellitenorientierung durch Sensor-Fusion, bis zur Schätzung der Schwerefeldparameter nach kleinsten Quadraten. Das funktionale Modell zwischen der Hauptbeobachtung von GRACE – hochgenaue Relativgeschwindigkeiten – und dem unbekannten Schwerefeld sowie die Bestimmung des stochastischen Modells der Satellitenbeobachtungen werden erläutert. Abschließend werden Anwendungsbeispiele der in Graz erstellten GRACE-Produkte gezeigt.
Abstract
The gravity field and its variations in time are important observables for the understanding of Earth’s dynamic system. The twin satellites of the GRACE (Gravity Recovery And Climate Experiment) mission have been designed to measure such temporal variations as well as the long-wavelength part of Earth’s gravity field with unprecedented accuracy on a global scale. The Institute of Geodesy at Graz University of Technology produces monthly, daily, and static gravity field solutions from raw observations of the GRACE mission for the scientific community. GRACE gravity fields derived in Graz have been used within the framework of the Climate Change Initiative (CCI) of the European Space Agency (ESA). As part of the Gravity Observation Combination (GOCO) initiative, Graz produces high-resolution static gravity fields from GRACE for combination with other satellite gravity missions such as GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) and terrestrial data. Daily solutions computed in Graz are for example used to study large flood events. This contribution gives an overview of the processing chain for GRACE gravity field recovery employed at Graz University of Technology. It comprises data preprocessing, determination of kinematic orbit positions from GPS observation, improvement of the measured satellite attitude, and the estimation of the gravity field parameters using a least squares adjustment. The functional model between the main observable – highly accurate relative velocities between the satellites – and the unknown gravity field is exemplified and an approach for the determination of the stochastic characteristics of the satellite observations is shown. To conclude, we present some applications for the GRACE gravity fields computed in Graz.
Das Schwerefeld der Erde und seine zeitliche Änderung stellen wichtige Beobachtungsgrößen in der Erforschung des dynamischen Systems Erde dar. Die Satellitenmission GRACE (Gravity Recovery And Climate Experiment) wurden entwickelt, um ebendiese zeitlichen Variationen und den langwelligen Anteil des Erdschwerefeldes erstmals mit globaler Überdeckung hochgenau zu erfassen. Das Institut für Geodäsie an der Technischen Universität Graz prozessiert die Rohdaten der GRACE-Mission und stellt monatliche, tägliche und statische Schwerefeldlösungen für die wissenschaftliche Gemeinschaft zur Verfügung. Die in Graz berechneten Schwerefeldmodelle wurden unter anderem im Rahmen der Climate Change Initiative (CCI) der Europäischen Weltraumorganisation (ESA) verwendet, um Massenbilanzen der Eisschilde von Grönland und der Antarktis zu bestimmen. Als Teil der Gravity Observation Combination (GOCO) Initiative steuert Graz hochauflösende GRACE-Modelle für die Kombination mit weiteren Schwerefeldmissionen wie GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) und terrestrischen Daten bei. Tägliche Lösungen aus Graz werden zum Beispiel in der Erforschung großer Hochwasserereignisse verwendet. Dieser Beitrag gibt einen Überblick über die Prozessierungskette der GRACE-Schwerefeldbestimmung, beginnend bei der Datenvorprozessierung, über die Bestimmung von kinematischen Satellitenorbits aus GPS Beobachtungen sowie der Verbesserung der gemessenen Satellitenorientierung durch Sensor-Fusion, bis zur Schätzung der Schwerefeldparameter nach kleinsten Quadraten. Das funktionale Modell zwischen der Hauptbeobachtung von GRACE – hochgenaue Relativgeschwindigkeiten – und dem unbekannten Schwerefeld sowie die Bestimmung des stochastischen Modells der Satellitenbeobachtungen werden erläutert. Abschließend werden Anwendungsbeispiele der in Graz erstellten GRACE-Produkte gezeigt.
Abstract
The gravity field and its variations in time are important observables for the understanding of Earth’s dynamic system. The twin satellites of the GRACE (Gravity Recovery And Climate Experiment) mission have been designed to measure such temporal variations as well as the long-wavelength part of Earth’s gravity field with unprecedented accuracy on a global scale. The Institute of Geodesy at Graz University of Technology produces monthly, daily, and static gravity field solutions from raw observations of the GRACE mission for the scientific community. GRACE gravity fields derived in Graz have been used within the framework of the Climate Change Initiative (CCI) of the European Space Agency (ESA). As part of the Gravity Observation Combination (GOCO) initiative, Graz produces high-resolution static gravity fields from GRACE for combination with other satellite gravity missions such as GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) and terrestrial data. Daily solutions computed in Graz are for example used to study large flood events. This contribution gives an overview of the processing chain for GRACE gravity field recovery employed at Graz University of Technology. It comprises data preprocessing, determination of kinematic orbit positions from GPS observation, improvement of the measured satellite attitude, and the estimation of the gravity field parameters using a least squares adjustment. The functional model between the main observable – highly accurate relative velocities between the satellites – and the unknown gravity field is exemplified and an approach for the determination of the stochastic characteristics of the satellite observations is shown. To conclude, we present some applications for the GRACE gravity fields computed in Graz.
PDF-Download
VGI_201815_Mayer-Guerr.pdf
VGI_201815_Mayer-Guerr.pdf
Global combination gravity field model based on GOCE and GRACE data
Kurzfassung
Die genaue Kenntnis über das Schwerefeld der Erde bildet die Basis für verschiedene Forschungsgebiete, wie Ozeanographie, Geophysik, Meeresspiegeländerung und Klimaveränderung. In der Geophysik können damit geodynamische Prozesse im Erdinneren besser modelliert und verstanden werden. Auf dem Gebiet der Ozeanographie dient das Erdschwerefeldmodell zusammen mit Beobachtungen von Satellitenaltimetrie-Missionen der Bestimmung von Meeresströmungen, welche wesentlich für den Energietransport auf der Erde verantwortlich sind. Gleichzeitig können auch Meeresspiegeländerungen erfasst werden, die u.a. aufgrund von Abschmelzvorgängen in den Polregionen hervorgerufen werden. Auch die Geodäsie profitiert von einem hochauflösenden Schwerefeldmodell, z.B. in der globalen Vereinheitlichung von Höhensystemen. Terrestrische Schwerefeldmessungen wurden schon seit jeher durchgeführt. Vorteil dieser Beobachtungen ist die hohe erreichbare Messgenauigkeit. Nachteile sind jedoch, dass zum einen ein homogenes und globales Beobachtungsnetz kaum realisierbar ist und zum anderen, dass aufgrund des Einsatzes unterschiedlichster Messinstrumente die Beobachtungen entsprechend unterschiedliche Messgenauigkeiten aufweisen. Der Start der Satellitenmissionen CHAMP (2000), GRACE (2002) und GOCE (2009) im letzten Jahrzehnt revolutionierte die Modellierung des Erdschwerefeldes. Aufgrund der kontinuierlichen Beobachtung aus dem Weltraum kann eine globale Abdeckung mit homogener Messgenauigkeit erzielt werden. Die Missionen unterscheiden sich prinzipiell anhand des individuellen Orbitdesigns und des Messkonzepts. Somit erhält man komplementäre und voneider komplett unabhängige Beobachtungstypen, welche sich hinsichtlich räumlicher Verteilung, Auflösung und spektraler Eigenschaften ergänzen. Ein weiterer Beobachtungstyp stellt das Konzept des Satellite Laser Ranging (SLR) dar. Hierbei kann die vom Gravitationsfeld der Erde beeinflusste Trajektorie von Satelliten mittels Entfernungsmessung von der Erde aus im cm-Bereich ermittelt werden. Eine genaue Kenntnis über die Bahn ermöglicht in einem weiteren Schritt die Bestimmung des auf den Satelliten wirkenden Erdschwerefeldes. Mittels Datenkombination können nun die individuellen Stärken und Vorteile der einzelnen Datentypen genutzt und gleichzeitig etwaige Defizite reduziert werden. Daraus sollen letztlich hochgenaue, hochauflösende globale Modelle des Gravitationsfeldes der Erde, parametrisiert durch sphärisch harmonische Koeffizienten einer Kugelfunktionsreihe und eine zugehörige Beschreibung der Genauigkeit mittels Varianz-Kovarianz-Matrix resultieren. Mathematisch erfolgt _x000C_8080Vermessung & Geoinformation 2/2011 diese Kombination auf Basis einer gewichteten Summation der Normalgleichungssysteme eines jeden Datentyps. Zur Berechnung der individuellen Gewichte bietet sich z.B. die Methode der Varianzkomponentenschätzung an, welche aus den gerechneten Residuen und der Redundanz einer jeden Beobachtungsgruppe in einem iterativen Vorgang einen Gewichtsfaktor ableitet. Im Juli 2010 wurde zusammen mit unseren Partnern innerhalb des GOCO (Gravity Observation Combination) Konsortiums das erste Kombinationsmodell aus Satellitenbeobachtungen veröffentlicht und trägt den Namen GOCO01S. Dieses Modell beruht auf sieben Jahren GRACE Daten und zwei Monaten GOCE Daten und hat eine Auflösung bis sphärisch-harmonischem Grad 224, was einer halben Wellenlänge von ca. 90 km entspricht. Die Kombination erfolgte auf Basis der Normalgleichungssysteme. Aufgrund einer angemessenen stochastischen Modellierung der GRACE und GOCE Beobachtungen gingen die beiden Komponenten mit einem Einheitsgewicht in die Kombination ein. Vergleiche zu bereits existierenden Modellen zeigen Verbesserungen speziell in gebirgigen Regionen und in Regionen in denen nur wenige und ungenaue terrestrische Messungen vorliegen. Durch die kontinuierlich zunehmende Beobachtungsdauer von GOCE und GRACE kann eine ständige Verbesserung der Schwerefeldmodelle erwartet werden. Derzeit arbeiten wir bereits an Nachfolgemodellen, welche sechs Monate an GOCE Daten, SLR Beobachtungen und terrestrische Datensätze beinhalten werden.
Abstract
A high-accuracy and detailed global map of the Earths gravity field is an essential product in many branches of Earth system sciences. A main research interest at the Institute of Theoretical Geodesy and Satellite Geodesy, TU Graz, is the generation of high-resolution global gravity field models by combining data from the satellite gravity missions GOCE, GRACE and CHAMP with complementary gravity field information represented by terrestrial and air-borne data, satellite altimetry, and satellite laser ranging (SLR). These different data types are complementary with respect to their measurement principle, accuracy, spatial distribution and resolution, and spectral (error) characteristics. By means of data combination, benefit can be taken from their individual strengths and favourable features, and in parallel specific deficiencies can be reduced. The combination is performed by means of the weighted addition of the normal equation system of each data type. Within a simulation scenario it could be demonstrated that the method of variance components estimation is well suited for weights estimation. The models are parameterized in terms of coefficients of a spherical harmonic expansion including a proper error description in terms of a variance-covariance matrix. Together with our partners within the international GOCO (Gravity Observation Combination) consortium, the first satellite-only gravity field model GOCO01S was released in July 2010.The model is a combination solution based on 2 months of GOCE data, and 7 years of GRACE data, resolved up to degree and order 224 of a harmonic series expansion. GOCO01S has been validated against external global gravity models and regional GPS-levelling observations.The comparison to existing models revealed improvements especially in mountainous regions and in areas where only a few or less accurate terrestrial observations are available. With the continuously increasing availability of GOCE and GRACE data further improvements in global gravity field recovery will be achieved.
Die genaue Kenntnis über das Schwerefeld der Erde bildet die Basis für verschiedene Forschungsgebiete, wie Ozeanographie, Geophysik, Meeresspiegeländerung und Klimaveränderung. In der Geophysik können damit geodynamische Prozesse im Erdinneren besser modelliert und verstanden werden. Auf dem Gebiet der Ozeanographie dient das Erdschwerefeldmodell zusammen mit Beobachtungen von Satellitenaltimetrie-Missionen der Bestimmung von Meeresströmungen, welche wesentlich für den Energietransport auf der Erde verantwortlich sind. Gleichzeitig können auch Meeresspiegeländerungen erfasst werden, die u.a. aufgrund von Abschmelzvorgängen in den Polregionen hervorgerufen werden. Auch die Geodäsie profitiert von einem hochauflösenden Schwerefeldmodell, z.B. in der globalen Vereinheitlichung von Höhensystemen. Terrestrische Schwerefeldmessungen wurden schon seit jeher durchgeführt. Vorteil dieser Beobachtungen ist die hohe erreichbare Messgenauigkeit. Nachteile sind jedoch, dass zum einen ein homogenes und globales Beobachtungsnetz kaum realisierbar ist und zum anderen, dass aufgrund des Einsatzes unterschiedlichster Messinstrumente die Beobachtungen entsprechend unterschiedliche Messgenauigkeiten aufweisen. Der Start der Satellitenmissionen CHAMP (2000), GRACE (2002) und GOCE (2009) im letzten Jahrzehnt revolutionierte die Modellierung des Erdschwerefeldes. Aufgrund der kontinuierlichen Beobachtung aus dem Weltraum kann eine globale Abdeckung mit homogener Messgenauigkeit erzielt werden. Die Missionen unterscheiden sich prinzipiell anhand des individuellen Orbitdesigns und des Messkonzepts. Somit erhält man komplementäre und voneider komplett unabhängige Beobachtungstypen, welche sich hinsichtlich räumlicher Verteilung, Auflösung und spektraler Eigenschaften ergänzen. Ein weiterer Beobachtungstyp stellt das Konzept des Satellite Laser Ranging (SLR) dar. Hierbei kann die vom Gravitationsfeld der Erde beeinflusste Trajektorie von Satelliten mittels Entfernungsmessung von der Erde aus im cm-Bereich ermittelt werden. Eine genaue Kenntnis über die Bahn ermöglicht in einem weiteren Schritt die Bestimmung des auf den Satelliten wirkenden Erdschwerefeldes. Mittels Datenkombination können nun die individuellen Stärken und Vorteile der einzelnen Datentypen genutzt und gleichzeitig etwaige Defizite reduziert werden. Daraus sollen letztlich hochgenaue, hochauflösende globale Modelle des Gravitationsfeldes der Erde, parametrisiert durch sphärisch harmonische Koeffizienten einer Kugelfunktionsreihe und eine zugehörige Beschreibung der Genauigkeit mittels Varianz-Kovarianz-Matrix resultieren. Mathematisch erfolgt _x000C_8080Vermessung & Geoinformation 2/2011 diese Kombination auf Basis einer gewichteten Summation der Normalgleichungssysteme eines jeden Datentyps. Zur Berechnung der individuellen Gewichte bietet sich z.B. die Methode der Varianzkomponentenschätzung an, welche aus den gerechneten Residuen und der Redundanz einer jeden Beobachtungsgruppe in einem iterativen Vorgang einen Gewichtsfaktor ableitet. Im Juli 2010 wurde zusammen mit unseren Partnern innerhalb des GOCO (Gravity Observation Combination) Konsortiums das erste Kombinationsmodell aus Satellitenbeobachtungen veröffentlicht und trägt den Namen GOCO01S. Dieses Modell beruht auf sieben Jahren GRACE Daten und zwei Monaten GOCE Daten und hat eine Auflösung bis sphärisch-harmonischem Grad 224, was einer halben Wellenlänge von ca. 90 km entspricht. Die Kombination erfolgte auf Basis der Normalgleichungssysteme. Aufgrund einer angemessenen stochastischen Modellierung der GRACE und GOCE Beobachtungen gingen die beiden Komponenten mit einem Einheitsgewicht in die Kombination ein. Vergleiche zu bereits existierenden Modellen zeigen Verbesserungen speziell in gebirgigen Regionen und in Regionen in denen nur wenige und ungenaue terrestrische Messungen vorliegen. Durch die kontinuierlich zunehmende Beobachtungsdauer von GOCE und GRACE kann eine ständige Verbesserung der Schwerefeldmodelle erwartet werden. Derzeit arbeiten wir bereits an Nachfolgemodellen, welche sechs Monate an GOCE Daten, SLR Beobachtungen und terrestrische Datensätze beinhalten werden.
Abstract
A high-accuracy and detailed global map of the Earths gravity field is an essential product in many branches of Earth system sciences. A main research interest at the Institute of Theoretical Geodesy and Satellite Geodesy, TU Graz, is the generation of high-resolution global gravity field models by combining data from the satellite gravity missions GOCE, GRACE and CHAMP with complementary gravity field information represented by terrestrial and air-borne data, satellite altimetry, and satellite laser ranging (SLR). These different data types are complementary with respect to their measurement principle, accuracy, spatial distribution and resolution, and spectral (error) characteristics. By means of data combination, benefit can be taken from their individual strengths and favourable features, and in parallel specific deficiencies can be reduced. The combination is performed by means of the weighted addition of the normal equation system of each data type. Within a simulation scenario it could be demonstrated that the method of variance components estimation is well suited for weights estimation. The models are parameterized in terms of coefficients of a spherical harmonic expansion including a proper error description in terms of a variance-covariance matrix. Together with our partners within the international GOCO (Gravity Observation Combination) consortium, the first satellite-only gravity field model GOCO01S was released in July 2010.The model is a combination solution based on 2 months of GOCE data, and 7 years of GRACE data, resolved up to degree and order 224 of a harmonic series expansion. GOCO01S has been validated against external global gravity models and regional GPS-levelling observations.The comparison to existing models revealed improvements especially in mountainous regions and in areas where only a few or less accurate terrestrial observations are available. With the continuously increasing availability of GOCE and GRACE data further improvements in global gravity field recovery will be achieved.
PDF-Download
VGI_201110_Goiginger.pdf
VGI_201110_Goiginger.pdf
Atmospheric effects on the Earth gravity field featured by TU Vienna
Kurzfassung
Satelliten-Missionen wie GRACE (Gravity Recovery and Climate Experiment) und GOCE (Gravity Field and steady-state Ocean Circulation Explorer), die das Erdschwerefeld erkunden, beobachten die momentane Verteilung der Massen im System Erde, einschließlich aller festen, flüssigen und gasförmigen Bestandteile. Aufgrund der Fluktuation dieser Massen auf verschiedenen räumlichen und zeitlichen Skalen garantiert eine lange Beobachtungszeit nicht, dass die durch sie verursachten Variationendes Schwerefeldeseliminiert werden. Um so gente Aliasing-Effekte zu vermeiden, muss deshalb der bekannte Teil der Massenvariationen modelliert und bezüglich eines mittleren Zustandes korrigiert werden. Innerhalb des Projekts"GGOS Atmosphäre", fiziert vom Österreichischen Wissenschaftsfonds (FWF) am Institut für Geodäsie und Geophysik (IGG) der TU Wien, werden verschiedene Methoden zur Bestimmung der atmosphärischen Schwerefeldfeldkoeffizienten (AGC) ausgewertet. Die Ergebnisse zeigen, dass für eine adäquate Modellierung die vertikale Struktur der Atmosphäre zu berücksichtigen ist. Außerdem hat die Auflast der Atmosphäre einen signifikanten Einfluss auf die Schwerkraftvariation und ist somit ebenfalls zu berücksichtigen. Die Wahl unterschiedlicher Datenstrukturen des ECMWF (European Centre for Medium-range Weather Forecasts), nämlich"model" oder "pressure level" Daten, hat keinen entscheidenden Einfluss auf die AGC. Alle Ergebnisse bestätigen die Strategie zur Datenverarbeitung des GRACE Science Data Systems ([4] Flechtner, 2007), welches das GRACE AOD1B (Stufe 1B Atmosphäre und Ozean de-Aliasing) Produkt bereitstellt.
Abstract
Satellite missions like GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity field and steady-state Ocean Circulation Explorer) which explore the Earth gravity field observe the instantaneous distribution of mass in the Earth, including all solid, liquid and gaseous components. Due to the fluctuation of those masses at various temporal and spatial scales, a long observation period does not guarantee that the introduced variations in the gravity field are cancelled out. Therefore, to avoid aliasing effects, the mass variations have to be modeled and corrected with respect to the mean state.Within project GGOS Atmosphere, funded by the Austrian Science Fund (FWF) at the Institute of Geodesy and Geophysics (IGG) of the Vienna University of Technology, different methods for the determination of Atmospheric Gravity field Coefficients (AGC) are evaluated. Results indicate that for a proper modelling the vertical structure of the atmosphere has to be taken into account, as already applied for GRACE data processing. Further, atmosphere loading adds a significant signal to the gravity change which has to be considered, in particular at longer wavelengths. The choice of different data structures of the ECMWF (European Centre for Medium-range Weather Forecasts), i.e. model or pressure level data, does not have a significant impact on the final AGC. All findings confirm the data processing strategy of the GRACE Science Data System([4] Flechtner, 2007), providing the operational GRACE AOD1B (level 1B atmosphere and ocean de-aliasing) product.
Satelliten-Missionen wie GRACE (Gravity Recovery and Climate Experiment) und GOCE (Gravity Field and steady-state Ocean Circulation Explorer), die das Erdschwerefeld erkunden, beobachten die momentane Verteilung der Massen im System Erde, einschließlich aller festen, flüssigen und gasförmigen Bestandteile. Aufgrund der Fluktuation dieser Massen auf verschiedenen räumlichen und zeitlichen Skalen garantiert eine lange Beobachtungszeit nicht, dass die durch sie verursachten Variationendes Schwerefeldeseliminiert werden. Um so gente Aliasing-Effekte zu vermeiden, muss deshalb der bekannte Teil der Massenvariationen modelliert und bezüglich eines mittleren Zustandes korrigiert werden. Innerhalb des Projekts"GGOS Atmosphäre", fiziert vom Österreichischen Wissenschaftsfonds (FWF) am Institut für Geodäsie und Geophysik (IGG) der TU Wien, werden verschiedene Methoden zur Bestimmung der atmosphärischen Schwerefeldfeldkoeffizienten (AGC) ausgewertet. Die Ergebnisse zeigen, dass für eine adäquate Modellierung die vertikale Struktur der Atmosphäre zu berücksichtigen ist. Außerdem hat die Auflast der Atmosphäre einen signifikanten Einfluss auf die Schwerkraftvariation und ist somit ebenfalls zu berücksichtigen. Die Wahl unterschiedlicher Datenstrukturen des ECMWF (European Centre for Medium-range Weather Forecasts), nämlich"model" oder "pressure level" Daten, hat keinen entscheidenden Einfluss auf die AGC. Alle Ergebnisse bestätigen die Strategie zur Datenverarbeitung des GRACE Science Data Systems ([4] Flechtner, 2007), welches das GRACE AOD1B (Stufe 1B Atmosphäre und Ozean de-Aliasing) Produkt bereitstellt.
Abstract
Satellite missions like GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity field and steady-state Ocean Circulation Explorer) which explore the Earth gravity field observe the instantaneous distribution of mass in the Earth, including all solid, liquid and gaseous components. Due to the fluctuation of those masses at various temporal and spatial scales, a long observation period does not guarantee that the introduced variations in the gravity field are cancelled out. Therefore, to avoid aliasing effects, the mass variations have to be modeled and corrected with respect to the mean state.Within project GGOS Atmosphere, funded by the Austrian Science Fund (FWF) at the Institute of Geodesy and Geophysics (IGG) of the Vienna University of Technology, different methods for the determination of Atmospheric Gravity field Coefficients (AGC) are evaluated. Results indicate that for a proper modelling the vertical structure of the atmosphere has to be taken into account, as already applied for GRACE data processing. Further, atmosphere loading adds a significant signal to the gravity change which has to be considered, in particular at longer wavelengths. The choice of different data structures of the ECMWF (European Centre for Medium-range Weather Forecasts), i.e. model or pressure level data, does not have a significant impact on the final AGC. All findings confirm the data processing strategy of the GRACE Science Data System([4] Flechtner, 2007), providing the operational GRACE AOD1B (level 1B atmosphere and ocean de-aliasing) product.
PDF-Download
VGI_201115_Karbon.pdf
VGI_201115_Karbon.pdf