- Home  »
- VGI - Die Zeitschrift  »
- Keyword
VGI - Autor
ntv2
Wir haben 2 Artikel über ntv2 gefunden.
InfraRASTER – Realisierung eines einheitlichen Referenzsystems und eines GNSS-RTK-Positionierungsdienstes für die ÖBB-Infrastruktur AG
Kurzfassung
Historisch bedingt sind Vermessungsdaten der ÖBB-Infrastruktur AG in unterschiedlichen Koordinatenreferenzsystemen und -rahmen definiert, zugleich wurden sie durch verschiedene Abbildungen projiziert. Höchstes Ziel war stets die Realisierung eines hochgenauen lokalen homogenen Referenzrahmens. Als problematisch erweisen sich diese lokalen Netze an Grenzsituationen infolge diskontinuierlicher Übergänge (Klaffungen). Mit dem System InfraRASTER wurde ein einheitliches und homogenes Referenzsystem für die ÖBB-Infrastruktur AG geschaffen, welches einen stetigen Übergang sämtlicher Netze sowie homogene Landeskoordinaten nahe typischer RTK-Genauigkeiten gewährleisten soll. Verwendung findet seit 2. Jänner 2024 der global-homogene Referenzrahmen ITRF2020 zur Epoche 2015.0 (davor der ITRF2014 zur Epoche 2010.0) sowie der lokale Referenzrahmen im System der österreichischen Landesvermessung. Der Datumsübergang wird durch einen 7-Parametersatz zuzüglich eines Korrekturrasters realisiert und mit dem RTK-Positionierungsdienst der ÖBB (TEPOS) via RTCM 3.1 als InfraRASTER bereitgestellt. Der Korrekturraster wurde aus rund 12500 bahnnahen Punkten und ca. 1200 österreichweit verteilten Punkten abgeleitet. Die Maschenweite beträgt 30" (≈ 600 m) in Länge und 20" (≈ 600 m) in Breite. Die Berechnung der Rasterkorrekturwerte in ellipsoidischer Länge, -Breite und -Höhe erfolgte durch die ÖBB Infrastruktur/Vermessung & Geoinformation mittels bikubischer Residuen-Interpolation flächendeckend für ganz Österreich. Seit dem 1. Juli 2022 ist InfraRASTER offiziell verfügbar und das entsprechende Regelwerk wurde in Kraft gesetzt. Die geforderten Genauigkeiten wurden bereits partiell bestätigt. Der Korrekturraster ist als iterativer Prozess zu verstehen, welcher anhand laufender Messungen geprüft und gegebenenfalls verbessert wird.
Abstract
For historical reasons, survey data from ÖBB-Infrastruktur AG are defined in different coordinate reference systems and frames. At the same time, they were projected using various projections. The primary objective has always been to establish a highly precise, local, and homogeneous reference frame. However, these local networks present challenges in border situations due to discontinuous transitions (gaps). The InfraRASTER system was developed to address these issues by providing a uniform and homogeneous reference system for ÖBB-Infrastruktur AG. It ensures a seamless transition for all networks and delivers homogeneous national coordinates, approaching typical RTK accuracies. Since January 2, 2024, the globally homogeneous reference frame ITRF2020 for the epoch 2015.0 (previously ITRF2014 for the epoch 2010.0) is being used, along with the local reference frame within the Austrian national surveying system. The geodetic datum transition is achieved through a 7-parameter set, supplemented by a correction grid, and is made available through the RTK positioning service of the ÖBB (TEPOS) via RTCM3.1 as InfraRASTER. The correction grid was derived from approximately 12500 points near the railway, as well as around 1200 points distributed across Austria. The mesh size measures 30" (≈ 600 m) in longitude and 20" (≈ 600 m) in latitude. The calculation of grid correction values in ellipsoidal longitude, latitude and height was carried out by ÖBB Infrastructure/Surveying & Geoinformation using bicubic residuals interpolation, covering the entire territory of Austria. As of July 1st, 2022, InfraRASTER has been officially available, and the associated regulations have come into effect. The required accuracies have already been partially confirmed. The correction grid should be considered an iterative process, subject to ongoing measurements and potential improvements if necessary.
Historisch bedingt sind Vermessungsdaten der ÖBB-Infrastruktur AG in unterschiedlichen Koordinatenreferenzsystemen und -rahmen definiert, zugleich wurden sie durch verschiedene Abbildungen projiziert. Höchstes Ziel war stets die Realisierung eines hochgenauen lokalen homogenen Referenzrahmens. Als problematisch erweisen sich diese lokalen Netze an Grenzsituationen infolge diskontinuierlicher Übergänge (Klaffungen). Mit dem System InfraRASTER wurde ein einheitliches und homogenes Referenzsystem für die ÖBB-Infrastruktur AG geschaffen, welches einen stetigen Übergang sämtlicher Netze sowie homogene Landeskoordinaten nahe typischer RTK-Genauigkeiten gewährleisten soll. Verwendung findet seit 2. Jänner 2024 der global-homogene Referenzrahmen ITRF2020 zur Epoche 2015.0 (davor der ITRF2014 zur Epoche 2010.0) sowie der lokale Referenzrahmen im System der österreichischen Landesvermessung. Der Datumsübergang wird durch einen 7-Parametersatz zuzüglich eines Korrekturrasters realisiert und mit dem RTK-Positionierungsdienst der ÖBB (TEPOS) via RTCM 3.1 als InfraRASTER bereitgestellt. Der Korrekturraster wurde aus rund 12500 bahnnahen Punkten und ca. 1200 österreichweit verteilten Punkten abgeleitet. Die Maschenweite beträgt 30" (≈ 600 m) in Länge und 20" (≈ 600 m) in Breite. Die Berechnung der Rasterkorrekturwerte in ellipsoidischer Länge, -Breite und -Höhe erfolgte durch die ÖBB Infrastruktur/Vermessung & Geoinformation mittels bikubischer Residuen-Interpolation flächendeckend für ganz Österreich. Seit dem 1. Juli 2022 ist InfraRASTER offiziell verfügbar und das entsprechende Regelwerk wurde in Kraft gesetzt. Die geforderten Genauigkeiten wurden bereits partiell bestätigt. Der Korrekturraster ist als iterativer Prozess zu verstehen, welcher anhand laufender Messungen geprüft und gegebenenfalls verbessert wird.
Abstract
For historical reasons, survey data from ÖBB-Infrastruktur AG are defined in different coordinate reference systems and frames. At the same time, they were projected using various projections. The primary objective has always been to establish a highly precise, local, and homogeneous reference frame. However, these local networks present challenges in border situations due to discontinuous transitions (gaps). The InfraRASTER system was developed to address these issues by providing a uniform and homogeneous reference system for ÖBB-Infrastruktur AG. It ensures a seamless transition for all networks and delivers homogeneous national coordinates, approaching typical RTK accuracies. Since January 2, 2024, the globally homogeneous reference frame ITRF2020 for the epoch 2015.0 (previously ITRF2014 for the epoch 2010.0) is being used, along with the local reference frame within the Austrian national surveying system. The geodetic datum transition is achieved through a 7-parameter set, supplemented by a correction grid, and is made available through the RTK positioning service of the ÖBB (TEPOS) via RTCM3.1 as InfraRASTER. The correction grid was derived from approximately 12500 points near the railway, as well as around 1200 points distributed across Austria. The mesh size measures 30" (≈ 600 m) in longitude and 20" (≈ 600 m) in latitude. The calculation of grid correction values in ellipsoidal longitude, latitude and height was carried out by ÖBB Infrastructure/Surveying & Geoinformation using bicubic residuals interpolation, covering the entire territory of Austria. As of July 1st, 2022, InfraRASTER has been officially available, and the associated regulations have come into effect. The required accuracies have already been partially confirmed. The correction grid should be considered an iterative process, subject to ongoing measurements and potential improvements if necessary.
Keywords/Schlüsselwörter
InfraRASTER reference system RTK positioning service ÖBB surveying correction grid ITRF2014 ITRF2020 NTv2
InfraRASTER reference system RTK positioning service ÖBB surveying correction grid ITRF2014 ITRF2020 NTv2
PDF-Download
VGI_202315_Gutlederer.pdf
VGI_202315_Gutlederer.pdf
Transformationsflächen für die Umrechnung zwischen ETRS89 und MGI in Österreich
Kurzfassung
Die Punktbestimmung mit globalen Satellitennavigationssystemen (GNSS) hat sich längst als Standardverfahren im Vermessungswesen etabliert. Die ermittelten Positionen sind dabei auf ein globales Koordinatensystem (z.B. ETRS89) bezogen. Sehr häu.g werden aber auch Koordinaten im derzeitigen nationalen System MGI in möglichst guter Anpassung an bereits vorhandene Daten benötigt. Bei kleinräumigen Vermessungen ist die 7-Parameter-Transformation für den Systemübergang von ETRS89 nach MGI eine gute Lösung. Um für größere Gebiete eine optimalere Anpassung zwischen den Systemen zu erzielen, stellt die .ächenbasierte Transformation eine bessere Möglichkeit dar. Das Bundesamt für Eich- und Vermessungswesen (BEV) hat im Jahr 2011 mit dem GIS-Grid ein Werkzeug zur .ächenbasierten Lagetransformation von ETRS89 nach MGI bereitgestellt. Diese Transformations.äche im NTv2-Format ermöglicht den Systemübergang mit einer Genauigkeit von besser als 15cm über ganz Österreich. Das Problem der Unstetigkeiten am Rand zweier benachbarter Gebiete, die mit unterschiedlichen 7-Parametersätzen transformiert wurden, ist mit dieser Lösung nicht mehr gegeben. Um schließlich auch eine Transformation für die, besonders im ALS (Airborne Laser Scanning), wesentliche Höhenkomponente zu ermöglichen, wurde vom BEV kürzlich das Höhen-Grid entwickelt. Diese aus Nivellement- und Schweredaten bestimmte Transformations.äche ermöglicht nunmehr auch den stetigen Übergang von GNSS-Höhen auf MGI-Höhen für ganz Österreich. Die Transformations.ächen des BEV für Lage und Höhe und deren Anwendung in der Praxis wird hier vorgestellt.
Abstract
The point determination with Global Navigation Satellite Systems (GNSS) is well-established as a standard surveying task nowadays. Thereby, the determined positions are based on a global coordinate system (e.g. ETRS89). However, in many cases coordinates in the local Austrian coordinate frame MGI are required, in good adjustment to already exiting coordinates. In the case of small project areas, the spatial similarity transformation is a good solution for the transformation between ETRS89 and MGI. If the project areas are more large-scale, the use of an area-based transformation is a better solution. In the year 2010 the Federal Of.ce of Meteorology and Surveying (BEV) developed an area-based transformation grid, the GIS-grid. This transformation grid in the NTv2 format allows a planar transformation between ETRS89 and MGI with an accuracy of better than 15cm. The problem of discontinuities at the transformation boundaries, which appear when using several transformation parameter sets of the spatial similarity transformation, is not relevant in this area-based solution. For the transformation of the height component, which is particularly important for Airborne Laser Scanning (ALS) data, the BEV introduced the Height-grid recently. This transformation grid, developed by using levelling and gravimetric data, allows the continuous transformation of GNSS-heights into MGI-heights for the whole area of Austria. The transformation grids of the BEV and their implementation in practice are introduced in this article.
Die Punktbestimmung mit globalen Satellitennavigationssystemen (GNSS) hat sich längst als Standardverfahren im Vermessungswesen etabliert. Die ermittelten Positionen sind dabei auf ein globales Koordinatensystem (z.B. ETRS89) bezogen. Sehr häu.g werden aber auch Koordinaten im derzeitigen nationalen System MGI in möglichst guter Anpassung an bereits vorhandene Daten benötigt. Bei kleinräumigen Vermessungen ist die 7-Parameter-Transformation für den Systemübergang von ETRS89 nach MGI eine gute Lösung. Um für größere Gebiete eine optimalere Anpassung zwischen den Systemen zu erzielen, stellt die .ächenbasierte Transformation eine bessere Möglichkeit dar. Das Bundesamt für Eich- und Vermessungswesen (BEV) hat im Jahr 2011 mit dem GIS-Grid ein Werkzeug zur .ächenbasierten Lagetransformation von ETRS89 nach MGI bereitgestellt. Diese Transformations.äche im NTv2-Format ermöglicht den Systemübergang mit einer Genauigkeit von besser als 15cm über ganz Österreich. Das Problem der Unstetigkeiten am Rand zweier benachbarter Gebiete, die mit unterschiedlichen 7-Parametersätzen transformiert wurden, ist mit dieser Lösung nicht mehr gegeben. Um schließlich auch eine Transformation für die, besonders im ALS (Airborne Laser Scanning), wesentliche Höhenkomponente zu ermöglichen, wurde vom BEV kürzlich das Höhen-Grid entwickelt. Diese aus Nivellement- und Schweredaten bestimmte Transformations.äche ermöglicht nunmehr auch den stetigen Übergang von GNSS-Höhen auf MGI-Höhen für ganz Österreich. Die Transformations.ächen des BEV für Lage und Höhe und deren Anwendung in der Praxis wird hier vorgestellt.
Abstract
The point determination with Global Navigation Satellite Systems (GNSS) is well-established as a standard surveying task nowadays. Thereby, the determined positions are based on a global coordinate system (e.g. ETRS89). However, in many cases coordinates in the local Austrian coordinate frame MGI are required, in good adjustment to already exiting coordinates. In the case of small project areas, the spatial similarity transformation is a good solution for the transformation between ETRS89 and MGI. If the project areas are more large-scale, the use of an area-based transformation is a better solution. In the year 2010 the Federal Of.ce of Meteorology and Surveying (BEV) developed an area-based transformation grid, the GIS-grid. This transformation grid in the NTv2 format allows a planar transformation between ETRS89 and MGI with an accuracy of better than 15cm. The problem of discontinuities at the transformation boundaries, which appear when using several transformation parameter sets of the spatial similarity transformation, is not relevant in this area-based solution. For the transformation of the height component, which is particularly important for Airborne Laser Scanning (ALS) data, the BEV introduced the Height-grid recently. This transformation grid, developed by using levelling and gravimetric data, allows the continuous transformation of GNSS-heights into MGI-heights for the whole area of Austria. The transformation grids of the BEV and their implementation in practice are introduced in this article.
Keywords/Schlüsselwörter
Transformation Höhe MGI ETRS89 Airborne Laserscanning Höhen-Grid GIS-Grid NTv2
Transformation Höhe MGI ETRS89 Airborne Laserscanning Höhen-Grid GIS-Grid NTv2
PDF-Download
VGI_201219_Otter.pdf
VGI_201219_Otter.pdf