- Home  »
- VGI - Die Zeitschrift  »
- Keyword
VGI - Autor
reference system
Wir haben 3 Artikel über reference system gefunden.
InfraRASTER – Realisierung eines einheitlichen Referenzsystems und eines GNSS-RTK-Positionierungsdienstes für die ÖBB-Infrastruktur AG
Kurzfassung
Historisch bedingt sind Vermessungsdaten der ÖBB-Infrastruktur AG in unterschiedlichen Koordinatenreferenzsystemen und -rahmen definiert, zugleich wurden sie durch verschiedene Abbildungen projiziert. Höchstes Ziel war stets die Realisierung eines hochgenauen lokalen homogenen Referenzrahmens. Als problematisch erweisen sich diese lokalen Netze an Grenzsituationen infolge diskontinuierlicher Übergänge (Klaffungen). Mit dem System InfraRASTER wurde ein einheitliches und homogenes Referenzsystem für die ÖBB-Infrastruktur AG geschaffen, welches einen stetigen Übergang sämtlicher Netze sowie homogene Landeskoordinaten nahe typischer RTK-Genauigkeiten gewährleisten soll. Verwendung findet seit 2. Jänner 2024 der global-homogene Referenzrahmen ITRF2020 zur Epoche 2015.0 (davor der ITRF2014 zur Epoche 2010.0) sowie der lokale Referenzrahmen im System der österreichischen Landesvermessung. Der Datumsübergang wird durch einen 7-Parametersatz zuzüglich eines Korrekturrasters realisiert und mit dem RTK-Positionierungsdienst der ÖBB (TEPOS) via RTCM 3.1 als InfraRASTER bereitgestellt. Der Korrekturraster wurde aus rund 12500 bahnnahen Punkten und ca. 1200 österreichweit verteilten Punkten abgeleitet. Die Maschenweite beträgt 30" (≈ 600 m) in Länge und 20" (≈ 600 m) in Breite. Die Berechnung der Rasterkorrekturwerte in ellipsoidischer Länge, -Breite und -Höhe erfolgte durch die ÖBB Infrastruktur/Vermessung & Geoinformation mittels bikubischer Residuen-Interpolation flächendeckend für ganz Österreich. Seit dem 1. Juli 2022 ist InfraRASTER offiziell verfügbar und das entsprechende Regelwerk wurde in Kraft gesetzt. Die geforderten Genauigkeiten wurden bereits partiell bestätigt. Der Korrekturraster ist als iterativer Prozess zu verstehen, welcher anhand laufender Messungen geprüft und gegebenenfalls verbessert wird.
Abstract
For historical reasons, survey data from ÖBB-Infrastruktur AG are defined in different coordinate reference systems and frames. At the same time, they were projected using various projections. The primary objective has always been to establish a highly precise, local, and homogeneous reference frame. However, these local networks present challenges in border situations due to discontinuous transitions (gaps). The InfraRASTER system was developed to address these issues by providing a uniform and homogeneous reference system for ÖBB-Infrastruktur AG. It ensures a seamless transition for all networks and delivers homogeneous national coordinates, approaching typical RTK accuracies. Since January 2, 2024, the globally homogeneous reference frame ITRF2020 for the epoch 2015.0 (previously ITRF2014 for the epoch 2010.0) is being used, along with the local reference frame within the Austrian national surveying system. The geodetic datum transition is achieved through a 7-parameter set, supplemented by a correction grid, and is made available through the RTK positioning service of the ÖBB (TEPOS) via RTCM3.1 as InfraRASTER. The correction grid was derived from approximately 12500 points near the railway, as well as around 1200 points distributed across Austria. The mesh size measures 30" (≈ 600 m) in longitude and 20" (≈ 600 m) in latitude. The calculation of grid correction values in ellipsoidal longitude, latitude and height was carried out by ÖBB Infrastructure/Surveying & Geoinformation using bicubic residuals interpolation, covering the entire territory of Austria. As of July 1st, 2022, InfraRASTER has been officially available, and the associated regulations have come into effect. The required accuracies have already been partially confirmed. The correction grid should be considered an iterative process, subject to ongoing measurements and potential improvements if necessary.
Historisch bedingt sind Vermessungsdaten der ÖBB-Infrastruktur AG in unterschiedlichen Koordinatenreferenzsystemen und -rahmen definiert, zugleich wurden sie durch verschiedene Abbildungen projiziert. Höchstes Ziel war stets die Realisierung eines hochgenauen lokalen homogenen Referenzrahmens. Als problematisch erweisen sich diese lokalen Netze an Grenzsituationen infolge diskontinuierlicher Übergänge (Klaffungen). Mit dem System InfraRASTER wurde ein einheitliches und homogenes Referenzsystem für die ÖBB-Infrastruktur AG geschaffen, welches einen stetigen Übergang sämtlicher Netze sowie homogene Landeskoordinaten nahe typischer RTK-Genauigkeiten gewährleisten soll. Verwendung findet seit 2. Jänner 2024 der global-homogene Referenzrahmen ITRF2020 zur Epoche 2015.0 (davor der ITRF2014 zur Epoche 2010.0) sowie der lokale Referenzrahmen im System der österreichischen Landesvermessung. Der Datumsübergang wird durch einen 7-Parametersatz zuzüglich eines Korrekturrasters realisiert und mit dem RTK-Positionierungsdienst der ÖBB (TEPOS) via RTCM 3.1 als InfraRASTER bereitgestellt. Der Korrekturraster wurde aus rund 12500 bahnnahen Punkten und ca. 1200 österreichweit verteilten Punkten abgeleitet. Die Maschenweite beträgt 30" (≈ 600 m) in Länge und 20" (≈ 600 m) in Breite. Die Berechnung der Rasterkorrekturwerte in ellipsoidischer Länge, -Breite und -Höhe erfolgte durch die ÖBB Infrastruktur/Vermessung & Geoinformation mittels bikubischer Residuen-Interpolation flächendeckend für ganz Österreich. Seit dem 1. Juli 2022 ist InfraRASTER offiziell verfügbar und das entsprechende Regelwerk wurde in Kraft gesetzt. Die geforderten Genauigkeiten wurden bereits partiell bestätigt. Der Korrekturraster ist als iterativer Prozess zu verstehen, welcher anhand laufender Messungen geprüft und gegebenenfalls verbessert wird.
Abstract
For historical reasons, survey data from ÖBB-Infrastruktur AG are defined in different coordinate reference systems and frames. At the same time, they were projected using various projections. The primary objective has always been to establish a highly precise, local, and homogeneous reference frame. However, these local networks present challenges in border situations due to discontinuous transitions (gaps). The InfraRASTER system was developed to address these issues by providing a uniform and homogeneous reference system for ÖBB-Infrastruktur AG. It ensures a seamless transition for all networks and delivers homogeneous national coordinates, approaching typical RTK accuracies. Since January 2, 2024, the globally homogeneous reference frame ITRF2020 for the epoch 2015.0 (previously ITRF2014 for the epoch 2010.0) is being used, along with the local reference frame within the Austrian national surveying system. The geodetic datum transition is achieved through a 7-parameter set, supplemented by a correction grid, and is made available through the RTK positioning service of the ÖBB (TEPOS) via RTCM3.1 as InfraRASTER. The correction grid was derived from approximately 12500 points near the railway, as well as around 1200 points distributed across Austria. The mesh size measures 30" (≈ 600 m) in longitude and 20" (≈ 600 m) in latitude. The calculation of grid correction values in ellipsoidal longitude, latitude and height was carried out by ÖBB Infrastructure/Surveying & Geoinformation using bicubic residuals interpolation, covering the entire territory of Austria. As of July 1st, 2022, InfraRASTER has been officially available, and the associated regulations have come into effect. The required accuracies have already been partially confirmed. The correction grid should be considered an iterative process, subject to ongoing measurements and potential improvements if necessary.
Keywords/Schlüsselwörter
InfraRASTER reference system RTK positioning service ÖBB surveying correction grid ITRF2014 ITRF2020 NTv2
InfraRASTER reference system RTK positioning service ÖBB surveying correction grid ITRF2014 ITRF2020 NTv2
PDF-Download
VGI_202315_Gutlederer.pdf
VGI_202315_Gutlederer.pdf
EUREF Analysis and Data Center at BEV Vienna
Kurzfassung
Um im wissenschaftlichen Bereich mit global verfügbaren GNSS Permanentstationen arbeiten zu können ist eine verlässliche Dateninfrastruktur notwendig. Das Bundesamt für Eich- und Vermessungswesen (BEV) in Wien hat sich dazu entschlossen dauerhaft dazu auf mehreren Ebenen beizutragen. Neben dem Betreiben eines von zwei EUREF Datenzentren wurde ein Analysezentrum aufgebaut, in dem eines der größten EPN (European Permanent Network) Teilnetzwerke ausgewertet wird. Das stellt einen wertvollen Beitrag zur internationalen Gemeinschaft der Referenzsysteme dar. Zusätzlich zum europäischen Netzwerk wird ein verdichtetes österreichisches Netzwerk ausgewertet, um Geschwindigkeiten auf der europäischen Erdplatte zu bestimmen.
Abstract
Reliable data infrastructure components are the fundamental background for scientific work with global distributed geodetic GNSS permanent stations. Therefore, the Federal Office of Metrology and Surveying (BEV) in Vienna decided to contribute to these long term activities on different levels. Besides creating one of the Data Centers within EUREF we also established an Analysis Center which processes one of the biggest network parts of the European Permanent Network EPN. This is a valuable contribution to the international reference frame community. In addition to the European Network we also monitor a dense Austrian network which is used for the determination of intraplate velocities.
Um im wissenschaftlichen Bereich mit global verfügbaren GNSS Permanentstationen arbeiten zu können ist eine verlässliche Dateninfrastruktur notwendig. Das Bundesamt für Eich- und Vermessungswesen (BEV) in Wien hat sich dazu entschlossen dauerhaft dazu auf mehreren Ebenen beizutragen. Neben dem Betreiben eines von zwei EUREF Datenzentren wurde ein Analysezentrum aufgebaut, in dem eines der größten EPN (European Permanent Network) Teilnetzwerke ausgewertet wird. Das stellt einen wertvollen Beitrag zur internationalen Gemeinschaft der Referenzsysteme dar. Zusätzlich zum europäischen Netzwerk wird ein verdichtetes österreichisches Netzwerk ausgewertet, um Geschwindigkeiten auf der europäischen Erdplatte zu bestimmen.
Abstract
Reliable data infrastructure components are the fundamental background for scientific work with global distributed geodetic GNSS permanent stations. Therefore, the Federal Office of Metrology and Surveying (BEV) in Vienna decided to contribute to these long term activities on different levels. Besides creating one of the Data Centers within EUREF we also established an Analysis Center which processes one of the biggest network parts of the European Permanent Network EPN. This is a valuable contribution to the international reference frame community. In addition to the European Network we also monitor a dense Austrian network which is used for the determination of intraplate velocities.
PDF-Download
VGI_201912_Sehnal.pdf
VGI_201912_Sehnal.pdf
Realisierung und Monitoring von ETRS89 in Österreich
Kurzfassung
Koordinatenbezugssysteme für Vermessung, Kataster und Geo-Wissenschaften wurden in den letzten 25 Jahren durch die Einbeziehung von Satellitenmessungen gravierend verändert. Die globale Vernetzung und länderübergreifende Projekte machten die Einführung eines 3-D Referenzsystems erforderlich. Gemeinsam mit den meisten anderen europäischen Ländern hat das Bundesamt für Eich- und Vermessungswesen (BEV) beschlossen, das European Terrestrial Reference System 1989 (ETRS89) als nationales 3-D Bezugssystem zu nutzen. Mit der Fertigstellung des Echtzeitdienstes APOS (Austrian Positioning Service) ist die permanente Realisierung von ETRS89 in Österreich gewährleistet. Im Beitrag wird ein Überblick über die Realisierung von ETRS89 gegeben. Es versteht sich von selbst, dass neben der Realisierung ein permanentes Monitoring eine entscheidende Aufgabe darstellt, um die Qualität der Realisierung sicher zu stellen. Über die Vorgangsweise beim Monitoring, sowie die sich daraus ergebenden Konsequenzen in Hinblick auf die Stabilität der Koordinaten wird berichtet. Abschließend wird die Nutzung von ETRS89 in Zusammenhang mit der EU-Richtlinie INSPIRE dargestellt.
Abstract
The generation of coordinate reference systems for geodesy, surveying and geo-sciences has been strongly changed by the use of satellite measurements over the last 25 years. 3-D reference systems are necessary to provide a common base for regional and global projects. The Federal Office of Metrology and Surveying (BEV) decided to use ETRS89 (European Terrestrial Reference System 1989) as the official 3-D system. The newly established Austrian Positioning Service (APOS) is used to implement ETRS89 in Austria. This article intends to give a survey of the implementation process of ETRS89 in Austria. Once realized, permanent monitoring is necessary to secure quality standard. In this article the monitoring process will be described and the necessity of coordinate stability as well as the consequences of possible changes in coordinates will be discussed. Finally the use of ETRS89 data within INSPIRE, the EU directive, will be referred to.
Koordinatenbezugssysteme für Vermessung, Kataster und Geo-Wissenschaften wurden in den letzten 25 Jahren durch die Einbeziehung von Satellitenmessungen gravierend verändert. Die globale Vernetzung und länderübergreifende Projekte machten die Einführung eines 3-D Referenzsystems erforderlich. Gemeinsam mit den meisten anderen europäischen Ländern hat das Bundesamt für Eich- und Vermessungswesen (BEV) beschlossen, das European Terrestrial Reference System 1989 (ETRS89) als nationales 3-D Bezugssystem zu nutzen. Mit der Fertigstellung des Echtzeitdienstes APOS (Austrian Positioning Service) ist die permanente Realisierung von ETRS89 in Österreich gewährleistet. Im Beitrag wird ein Überblick über die Realisierung von ETRS89 gegeben. Es versteht sich von selbst, dass neben der Realisierung ein permanentes Monitoring eine entscheidende Aufgabe darstellt, um die Qualität der Realisierung sicher zu stellen. Über die Vorgangsweise beim Monitoring, sowie die sich daraus ergebenden Konsequenzen in Hinblick auf die Stabilität der Koordinaten wird berichtet. Abschließend wird die Nutzung von ETRS89 in Zusammenhang mit der EU-Richtlinie INSPIRE dargestellt.
Abstract
The generation of coordinate reference systems for geodesy, surveying and geo-sciences has been strongly changed by the use of satellite measurements over the last 25 years. 3-D reference systems are necessary to provide a common base for regional and global projects. The Federal Office of Metrology and Surveying (BEV) decided to use ETRS89 (European Terrestrial Reference System 1989) as the official 3-D system. The newly established Austrian Positioning Service (APOS) is used to implement ETRS89 in Austria. This article intends to give a survey of the implementation process of ETRS89 in Austria. Once realized, permanent monitoring is necessary to secure quality standard. In this article the monitoring process will be described and the necessity of coordinate stability as well as the consequences of possible changes in coordinates will be discussed. Finally the use of ETRS89 data within INSPIRE, the EU directive, will be referred to.
PDF-Download
VGI_201007_Titz.pdf
VGI_201007_Titz.pdf