- Home  »
- VGI - Die Zeitschrift  »
- 2013 - 101. Jahrgang  »
- Heft 2-3/2013
Heft 2-3/2013
Heft 2-3/2013
Vom Modellflughobby zu unbemannten Flugsystemen für die Geodatenerfassung
Kurzfassung
In den letzten Jahren haben die technologischen Entwicklungen im Bereich der unbemannten Luftfahrzeuge (uLFZ, engl. Unmanned aerial vehicles, UAV) zu einem vermehrten Einsatz dieser Technologie in Forschung und Entwicklung geführt. Dieser Beitrag gibt einen Überblick über den aktuellen Stand der Technik und die laufende Rechtsentwicklung zum praktischen Einsatz von UAV Systemen (engl. Unmanned aerial systems, UAS) für die Geodatenerfassung in Österreich. Darüber hinaus werden unterschiedliche Anwendungsmöglichkeiten dieser Technologie aufgezeigt. Zukünftig besitzen UAS das Potential die Datenerfassungslücke zwischen der terrestrischen Vermessung und der luftgestützten bemannten Luftfahrt zu schließen.
Abstract
Technological developments have led to a significantly increased usage of unmanned aerial vehicles (UAV) in research and development in the last years.This article provides an overview about the actual status of the UAV technology in the field of geomatics and provides actual information about the legal use of UAV in Austria. Furthermore, different application fields are discussed. In the future, UAS have the potential to close the data acquisition gap between terrestrial surveying and manned airborne data acquisition.
In den letzten Jahren haben die technologischen Entwicklungen im Bereich der unbemannten Luftfahrzeuge (uLFZ, engl. Unmanned aerial vehicles, UAV) zu einem vermehrten Einsatz dieser Technologie in Forschung und Entwicklung geführt. Dieser Beitrag gibt einen Überblick über den aktuellen Stand der Technik und die laufende Rechtsentwicklung zum praktischen Einsatz von UAV Systemen (engl. Unmanned aerial systems, UAS) für die Geodatenerfassung in Österreich. Darüber hinaus werden unterschiedliche Anwendungsmöglichkeiten dieser Technologie aufgezeigt. Zukünftig besitzen UAS das Potential die Datenerfassungslücke zwischen der terrestrischen Vermessung und der luftgestützten bemannten Luftfahrt zu schließen.
Abstract
Technological developments have led to a significantly increased usage of unmanned aerial vehicles (UAV) in research and development in the last years.This article provides an overview about the actual status of the UAV technology in the field of geomatics and provides actual information about the legal use of UAV in Austria. Furthermore, different application fields are discussed. In the future, UAS have the potential to close the data acquisition gap between terrestrial surveying and manned airborne data acquisition.
Keywords/Schlüsselwörter
Unbemannte Luftfahrzeuge unbemannte Flugsysteme Flugsteuerungssysteme Luftbild Nahbereichs-Luftbildmessung
Unbemannte Luftfahrzeuge unbemannte Flugsysteme Flugsteuerungssysteme Luftbild Nahbereichs-Luftbildmessung
PDF-Download
VGI_201306_Briese.pdf
VGI_201306_Briese.pdf
Direkte Georeferenzierung von Bildern eines unbemannten Luftfahrzeuges mit LowCost-Sensoren
Kurzfassung
Unbemannte Luftfahrzeuge können mit einer Vielzahl von unterschiedlichen Bordsensoren ausgestattet werden.Dazu zählen typischerweise ein GNSS-Empfänger, eine inertiale Messeinheit, ein Magnetometer und ein Luftdrucksensor. Diese Sensoren dienen dazu, den Piloten bei seiner Flugmission zu unterstützen und ermöglichen die Durchführung von autonomen Flügen. In diesem Beitrag wird gezeigt, dass diese Sensoren außerdem dazu verwendet werden können, um Bilder einer Kamera direkt zu georeferenzieren. Darunter versteht man die direkte Bestimmung (d.h. ohne Nutzung des Bildinhaltes) der Position (drei Koordinaten) und der Orientierung (drei Drehwinkel) der Kamera zum Aufnahmezeitpunkt der Bilder. Die Einführung dieser Beobachtungen in die Bündelblockausgleichung (integrierte Sensororientierung) vermeidet weitgehend Deformationen des Bildblockes, wie sie bei der Nutzung von nur wenigen Passpunkten auftreten können. Als Flugplattform wurde ein Multikopter, basierend auf der MikroKopter-Plattform, eingesetzt. Die Flugplattform ist als offenes System konzipiert und erlaubte somit Modifikationen, welche die Aufzeichnung der Sensorrohdaten und deren Synchronisation mit der Kamera möglich machten. Normalerweise werden für die direkte Georeferenzierung von Luftbildern nur der GNSS-Empfänger und die Sensoren der inertialen Messeinheit verwendet. Die in unbemannten Luftfahrzeugen typischerweise dafür eingesetzten MEMS-Sensoren zeichnen sich zwar durch ein geringes Gewicht aus, liefern aber nur eine geringe Messgenauigkeit. Daher ist die Erweiterung von GNSS und inertialer Messeinheit mit einem Magnetometer und einem Luftdrucksensor notwendig. Durch die Integration aller Sensoren zu einem Gesamtsystem kann damit die Genauigkeit der Positions- und Orientierungsbestimmung entscheidend verbessert werden. Die Evaluierung der vorgeschlagenen Methode zeigt, dass die Position der Bilder mit einer Präzision von ca. 0.5m (Lage) bzw. 1.0m (Höhe) bestimmt werden kann. Die Orientierungswinkel können mit einer Präzision von ca.1° (Roll und Nick) und 2° (Gier) bestimmt werden. Es kamen dazu ausschließlich die zur Flugsteuerung bereits vorhandenen Bordsensoren zum Einsatz.
Abstract
Unmanned aerial vehicles (UAV) can be equipped with a large variety of different on-board sensors.The typical UAV setup consists of a GNSS antenna with a receiver, an inertial measurement unit (IMU), a magnetometer and an air pressure sensor.These sensors allow to assist the pilot on the ground and to carry out autonomous flights.This article demonstrates that these sensors can be additionally used to directly georeference the imagery taken from the UAV platform.This results in the estimation of the position (three coordinates) and orientation (three rotation angles) of the images without the usage of the image content.The integration of these observations into a bundle block adjustment (integrated sensor orientation) avoids a deformation of the image block, as it can occur if only few control points were used. Within the practical examples, a multi-rotor system based on the MikroKopter platform was utilized.The open source character of the project allowed some minor code modification that allowed recording the raw sensor data and made the synchronisation with the camera trigger signal possible. The direct georeferencing of aerial images is typically just based on GNSS and IMU observations. Due to the low measurement quality of the utilized MEMS sensors, the additional usage of a magnetometer and an air pressure sensor is essential to support the GNSS and IMU observations. By the integration of the observations of all sensors a significant increase of accuracy and reliability of the determined positions and orientations can be achieved. The evaluation of the proposed method shows that the estimated position of the image can be determined with a precession of approx. 0.5 m (planar) and 1 m (height).The rotation angles can be determined with a precision of approx. 1° (roll and nick) and 2° (yaw).The direct georeferencing of the images of this practical test is just based on the sensor equipment that is already available on-board of the MikroKopter platform.
Unbemannte Luftfahrzeuge können mit einer Vielzahl von unterschiedlichen Bordsensoren ausgestattet werden.Dazu zählen typischerweise ein GNSS-Empfänger, eine inertiale Messeinheit, ein Magnetometer und ein Luftdrucksensor. Diese Sensoren dienen dazu, den Piloten bei seiner Flugmission zu unterstützen und ermöglichen die Durchführung von autonomen Flügen. In diesem Beitrag wird gezeigt, dass diese Sensoren außerdem dazu verwendet werden können, um Bilder einer Kamera direkt zu georeferenzieren. Darunter versteht man die direkte Bestimmung (d.h. ohne Nutzung des Bildinhaltes) der Position (drei Koordinaten) und der Orientierung (drei Drehwinkel) der Kamera zum Aufnahmezeitpunkt der Bilder. Die Einführung dieser Beobachtungen in die Bündelblockausgleichung (integrierte Sensororientierung) vermeidet weitgehend Deformationen des Bildblockes, wie sie bei der Nutzung von nur wenigen Passpunkten auftreten können. Als Flugplattform wurde ein Multikopter, basierend auf der MikroKopter-Plattform, eingesetzt. Die Flugplattform ist als offenes System konzipiert und erlaubte somit Modifikationen, welche die Aufzeichnung der Sensorrohdaten und deren Synchronisation mit der Kamera möglich machten. Normalerweise werden für die direkte Georeferenzierung von Luftbildern nur der GNSS-Empfänger und die Sensoren der inertialen Messeinheit verwendet. Die in unbemannten Luftfahrzeugen typischerweise dafür eingesetzten MEMS-Sensoren zeichnen sich zwar durch ein geringes Gewicht aus, liefern aber nur eine geringe Messgenauigkeit. Daher ist die Erweiterung von GNSS und inertialer Messeinheit mit einem Magnetometer und einem Luftdrucksensor notwendig. Durch die Integration aller Sensoren zu einem Gesamtsystem kann damit die Genauigkeit der Positions- und Orientierungsbestimmung entscheidend verbessert werden. Die Evaluierung der vorgeschlagenen Methode zeigt, dass die Position der Bilder mit einer Präzision von ca. 0.5m (Lage) bzw. 1.0m (Höhe) bestimmt werden kann. Die Orientierungswinkel können mit einer Präzision von ca.1° (Roll und Nick) und 2° (Gier) bestimmt werden. Es kamen dazu ausschließlich die zur Flugsteuerung bereits vorhandenen Bordsensoren zum Einsatz.
Abstract
Unmanned aerial vehicles (UAV) can be equipped with a large variety of different on-board sensors.The typical UAV setup consists of a GNSS antenna with a receiver, an inertial measurement unit (IMU), a magnetometer and an air pressure sensor.These sensors allow to assist the pilot on the ground and to carry out autonomous flights.This article demonstrates that these sensors can be additionally used to directly georeference the imagery taken from the UAV platform.This results in the estimation of the position (three coordinates) and orientation (three rotation angles) of the images without the usage of the image content.The integration of these observations into a bundle block adjustment (integrated sensor orientation) avoids a deformation of the image block, as it can occur if only few control points were used. Within the practical examples, a multi-rotor system based on the MikroKopter platform was utilized.The open source character of the project allowed some minor code modification that allowed recording the raw sensor data and made the synchronisation with the camera trigger signal possible. The direct georeferencing of aerial images is typically just based on GNSS and IMU observations. Due to the low measurement quality of the utilized MEMS sensors, the additional usage of a magnetometer and an air pressure sensor is essential to support the GNSS and IMU observations. By the integration of the observations of all sensors a significant increase of accuracy and reliability of the determined positions and orientations can be achieved. The evaluation of the proposed method shows that the estimated position of the image can be determined with a precession of approx. 0.5 m (planar) and 1 m (height).The rotation angles can be determined with a precision of approx. 1° (roll and nick) and 2° (yaw).The direct georeferencing of the images of this practical test is just based on the sensor equipment that is already available on-board of the MikroKopter platform.
PDF-Download
VGI_201307_Glira.pdf
VGI_201307_Glira.pdf
Echtzeit-Qualitätsüberprüfung für zuverlässige UAV-gestützte Bilddatenerfassung und exakte, automatisierte Mehrbildauswertung
Kurzfassung
Photogrammetrische Verfahren werden bereits seit vielen Jahrzehnten für Vermessungsaufgaben verwendet. Durch die Weiterentwicklung von unbemannten Flugsystemen (engl. Unmanned Aerial Vehicle, UAV) und der leistungsfähigen, automatisierten Bildauswertung ergeben sich neue Einsatzbereiche wie z.B. die vermessungstechnische Unterstützung eines Tagebaus. In diesem Artikel beschreiben wir, wie mittels Photogrammetrie auf Basis von Bildern, die von einem Oktokopter aus aufgenommen wurden, eine exakte Rekonstruktion und Vermessung einer im Tagebau typischen Bruchwand durchgeführt werden kann. Für die Genauigkeit und die Vollständigkeit ausschlaggebend sind dabei unter anderem die Redundanz und die Bodenauflösung der aufgenommenen Bilder. Da diese Parameter während der Bildaufnahme ohne Hilfsmittel schwer zu kontrollieren sind, stellen wir ein Verfahren vor, mit dem bereits während des Fluges in Echtzeit sichergestellt wird, dass die aufgenommenen Bilder für die nachfolgende automatisierte, photogrammetrische Auswertung verwendbar sind und die Qualitätsanforderungen erfüllen. Damit verringert sich die Gefahr, den Bildflug wiederholen zu müssen.Wir zeigen, dass mit den so aufgenommen Bildern in Kombination mit einer automatisierten Mehrbildauswertung ohne Zuhilfenahme von externen Pass- und Kontrollpunktmessungen eine Messunsicherheit von unter 0.1% auf einer Länge von 100m erreicht wird.
Abstract
Photogrammetric systems are used for several tasks since decades.The development of small and lightweight Unmanned Aerial Vehicles (UAVs) that are suited to carry a consumer-grade camera, in conjunction with fully automatic 3D reconstruction systems, supports applications such as recurrent topographical surveys in open pit mining. In this article we describe that a fully automatic photogrammetric system can be used to measure distances on a quarry wall using images acquired by an octo-rotor helicopter.To make the reconstruction more reliable in terms of accuracy and completeness, we propose a method that allows to assess already during the flight if the acquired images are sufficient to achieve the required properties of the offline photogrammetric reconstruction.This method provides online feedback to the user such that he or she can adopt the image acquisition strategy to obtain a complete and accurate reconstruction.We show that based on these images a fully automatic reconstruction pipeline is able to obtain object points with an uncertainty of less than 0.1% of a 100m quarry wall without the aid of external ground control points.
Photogrammetrische Verfahren werden bereits seit vielen Jahrzehnten für Vermessungsaufgaben verwendet. Durch die Weiterentwicklung von unbemannten Flugsystemen (engl. Unmanned Aerial Vehicle, UAV) und der leistungsfähigen, automatisierten Bildauswertung ergeben sich neue Einsatzbereiche wie z.B. die vermessungstechnische Unterstützung eines Tagebaus. In diesem Artikel beschreiben wir, wie mittels Photogrammetrie auf Basis von Bildern, die von einem Oktokopter aus aufgenommen wurden, eine exakte Rekonstruktion und Vermessung einer im Tagebau typischen Bruchwand durchgeführt werden kann. Für die Genauigkeit und die Vollständigkeit ausschlaggebend sind dabei unter anderem die Redundanz und die Bodenauflösung der aufgenommenen Bilder. Da diese Parameter während der Bildaufnahme ohne Hilfsmittel schwer zu kontrollieren sind, stellen wir ein Verfahren vor, mit dem bereits während des Fluges in Echtzeit sichergestellt wird, dass die aufgenommenen Bilder für die nachfolgende automatisierte, photogrammetrische Auswertung verwendbar sind und die Qualitätsanforderungen erfüllen. Damit verringert sich die Gefahr, den Bildflug wiederholen zu müssen.Wir zeigen, dass mit den so aufgenommen Bildern in Kombination mit einer automatisierten Mehrbildauswertung ohne Zuhilfenahme von externen Pass- und Kontrollpunktmessungen eine Messunsicherheit von unter 0.1% auf einer Länge von 100m erreicht wird.
Abstract
Photogrammetric systems are used for several tasks since decades.The development of small and lightweight Unmanned Aerial Vehicles (UAVs) that are suited to carry a consumer-grade camera, in conjunction with fully automatic 3D reconstruction systems, supports applications such as recurrent topographical surveys in open pit mining. In this article we describe that a fully automatic photogrammetric system can be used to measure distances on a quarry wall using images acquired by an octo-rotor helicopter.To make the reconstruction more reliable in terms of accuracy and completeness, we propose a method that allows to assess already during the flight if the acquired images are sufficient to achieve the required properties of the offline photogrammetric reconstruction.This method provides online feedback to the user such that he or she can adopt the image acquisition strategy to obtain a complete and accurate reconstruction.We show that based on these images a fully automatic reconstruction pipeline is able to obtain object points with an uncertainty of less than 0.1% of a 100m quarry wall without the aid of external ground control points.
Keywords/Schlüsselwörter
Photogrammetrie unbemannte Flugsysteme Luftbild-Datenerfassung bildbasierte 3D Rekonstruktion Echtzeit-Qualitätskontrolle Genauigkeitsauswertung
Photogrammetrie unbemannte Flugsysteme Luftbild-Datenerfassung bildbasierte 3D Rekonstruktion Echtzeit-Qualitätskontrolle Genauigkeitsauswertung
PDF-Download
VGI_201308_Rumpler.pdf
VGI_201308_Rumpler.pdf
Naturgefahrenmonitoring alpiner Prozesse aus multitemporalen UAV- und LIDAR-Daten - Erfahrungen im praktischen Einsatz
Kurzfassung
UAVs (Unmanned Aerial Vehicles) bieten mit hochauflösender Luftbildfotografie eine optimale Maßstabsergänzung zwischen bewährten terrestrischen und luftgestützten Aufnahmemethoden. Der alpine Raum stellt mit starken Reliefunterschieden, schwieriger Topographie und oft unzugänglichen Flächen den Einsatz moderner Kopter- und Flächen-UAVs vor neue Herausforderungen. Erfahrungen beim Einsatz und der Auswertung von UAVs im Zusammenhang mit der Dokumentation von Naturgefahren werden anhand verschiedener Einsatzszenarien (Steinschlag, Holzeintrag in Wildbach, Volumensbestimmung eines Rückhaltebeckens) aufgezeigt und diskutiert.
Abstract
UAVs (Unmanned Aerial Vehicles) with their potential for high-resolution aerial imaging proved to be an ideal complement to close the metrological gap between terrestrial (close-range) and airborne photogrammetric platforms.Alpine areas with their varying relief and complex topography also lead modern copters and plane UAVs into definitive challenges regarding unapproachable areas. Experiences with the flight operation and the evaluation of data for the documentation of natural hazards are shown and various mission scenarios (falling rocks, wood impact into mountain torrent, volume estimation of retention pool) are discussed.
UAVs (Unmanned Aerial Vehicles) bieten mit hochauflösender Luftbildfotografie eine optimale Maßstabsergänzung zwischen bewährten terrestrischen und luftgestützten Aufnahmemethoden. Der alpine Raum stellt mit starken Reliefunterschieden, schwieriger Topographie und oft unzugänglichen Flächen den Einsatz moderner Kopter- und Flächen-UAVs vor neue Herausforderungen. Erfahrungen beim Einsatz und der Auswertung von UAVs im Zusammenhang mit der Dokumentation von Naturgefahren werden anhand verschiedener Einsatzszenarien (Steinschlag, Holzeintrag in Wildbach, Volumensbestimmung eines Rückhaltebeckens) aufgezeigt und diskutiert.
Abstract
UAVs (Unmanned Aerial Vehicles) with their potential for high-resolution aerial imaging proved to be an ideal complement to close the metrological gap between terrestrial (close-range) and airborne photogrammetric platforms.Alpine areas with their varying relief and complex topography also lead modern copters and plane UAVs into definitive challenges regarding unapproachable areas. Experiences with the flight operation and the evaluation of data for the documentation of natural hazards are shown and various mission scenarios (falling rocks, wood impact into mountain torrent, volume estimation of retention pool) are discussed.
PDF-Download
VGI_201309_Ragg.pdf
VGI_201309_Ragg.pdf
Einsatz von UAV im alpinen Gelände. Erfahrungsbericht und Anwendungsbeispiel aus der Naturgefahrenpraxis
Kurzfassung
Unbemannte Flugsysteme (UAV) werden immer mehr zum Standardwerkzeug zur Erfassung von Geodaten, insbesondere der Gewinnung von Luftbildern. Mit der entsprechenden Software können daraus verhältnismäßig rasch dreidimensionale Modelle der Geländeoberfläche berechnet werden. Im Naturgefahrenbereich sind solche aktuellen und hoch aufgelösten Oberflächenmodelle als Datengrundlagen für die weitergehende Analyse und das Prozessverständnis von Ereignissen gefragt.Vor diesem Hintergrund wurde im Sommer im Tiroler Halltal (Karwendel) die Befliegung einer Erosionsrinne mit einer ausgedehnten Schutthalde durchgeführt. Der folgende Beitrag geht im ersten Teil auf die besonderen Herausforderungen ein, welche die extreme alpine Topographie sowohl an die Durchführung des Fluges als auch an die anschließende Auswertung der Bilder stellt. Im zweiten Teil wird als konkretes Anwendungsbeispiel dieser neuen Geländedaten die Ereignisrekonstruktion zweier Murgänge beschrieben und der Mehrwert von Geländedaten aus UAV-Luftbildern diskutiert.
Abstract
UAVs become a standard-method for geodata collection, particularly high-resolution aerial images.With easy to use image matching software nowadays it is possible to calculate 3D models of the surface fast and cost-effective. Such actual models often are asked for natural hazard management. For the purpose of calculating a mass balance of a debris flow in the Tyrolean Halltal a UAV was used.The extreme alpine environment was challenging for both the mission and the evaluation of the aerial images.With this data, a chronologically resolved back-calculation of one debris-flow event could be performed.
Unbemannte Flugsysteme (UAV) werden immer mehr zum Standardwerkzeug zur Erfassung von Geodaten, insbesondere der Gewinnung von Luftbildern. Mit der entsprechenden Software können daraus verhältnismäßig rasch dreidimensionale Modelle der Geländeoberfläche berechnet werden. Im Naturgefahrenbereich sind solche aktuellen und hoch aufgelösten Oberflächenmodelle als Datengrundlagen für die weitergehende Analyse und das Prozessverständnis von Ereignissen gefragt.Vor diesem Hintergrund wurde im Sommer im Tiroler Halltal (Karwendel) die Befliegung einer Erosionsrinne mit einer ausgedehnten Schutthalde durchgeführt. Der folgende Beitrag geht im ersten Teil auf die besonderen Herausforderungen ein, welche die extreme alpine Topographie sowohl an die Durchführung des Fluges als auch an die anschließende Auswertung der Bilder stellt. Im zweiten Teil wird als konkretes Anwendungsbeispiel dieser neuen Geländedaten die Ereignisrekonstruktion zweier Murgänge beschrieben und der Mehrwert von Geländedaten aus UAV-Luftbildern diskutiert.
Abstract
UAVs become a standard-method for geodata collection, particularly high-resolution aerial images.With easy to use image matching software nowadays it is possible to calculate 3D models of the surface fast and cost-effective. Such actual models often are asked for natural hazard management. For the purpose of calculating a mass balance of a debris flow in the Tyrolean Halltal a UAV was used.The extreme alpine environment was challenging for both the mission and the evaluation of the aerial images.With this data, a chronologically resolved back-calculation of one debris-flow event could be performed.
PDF-Download
VGI_201310_Sotier.pdf
VGI_201310_Sotier.pdf
Zur Auswahl und Bewertung von Flächenflugzeug-Mikrodrohnen für die Luftbildvermessung
Kurzfassung
Der zu Aufklärungszwecken im militärischen Bereich erfolgreiche Einsatz unbemannter Mikrodrohnen (Unmanned Aerial Vehicles, UAV) lenkte in den letzten Jahren die Aufmerksamkeit verschiedener Gruppen auf die Möglichkeiten dieser Systeme, deren ständige Weiterentwicklung inzwischen auch für das Vermessungswesen attraktive Chancen bietet. Die in den Geräten vereinte Integration der in sich bereits anspruchsvollen Themenfelder Flugzeugtechnik, Sensorik, Elektronik, Software, Modellbau und Photogrammetrie schafft eine Komplexität, die es für Außenstehende schwierig macht, für ihre Anwendungen geeignete Produkte zu identifizieren. Es werden daher einige Punkte beleuchtet, die für die Auswahl und Nutzung dieser Systeme in der Geodäsie wichtig sind.
Abstract
The successful application of microdrones (Unmanned Aerical Vehicles, UAV) in military intelligence has directed the attention of several groups onto the possibilities of these systems, whose continuing evolution meanwhile offers attractive chances for surveying purposes. These systems integrate a handful of already challenging topics like aviation engineering, sensors, electronics, software, modelling and photogrammetry, which causes a degree of complexity that makes it difficult for outsiders to identify a good product.Therefore a few issues shall be highlighted, which are important for choosing and using these systems in surveying.
Der zu Aufklärungszwecken im militärischen Bereich erfolgreiche Einsatz unbemannter Mikrodrohnen (Unmanned Aerial Vehicles, UAV) lenkte in den letzten Jahren die Aufmerksamkeit verschiedener Gruppen auf die Möglichkeiten dieser Systeme, deren ständige Weiterentwicklung inzwischen auch für das Vermessungswesen attraktive Chancen bietet. Die in den Geräten vereinte Integration der in sich bereits anspruchsvollen Themenfelder Flugzeugtechnik, Sensorik, Elektronik, Software, Modellbau und Photogrammetrie schafft eine Komplexität, die es für Außenstehende schwierig macht, für ihre Anwendungen geeignete Produkte zu identifizieren. Es werden daher einige Punkte beleuchtet, die für die Auswahl und Nutzung dieser Systeme in der Geodäsie wichtig sind.
Abstract
The successful application of microdrones (Unmanned Aerical Vehicles, UAV) in military intelligence has directed the attention of several groups onto the possibilities of these systems, whose continuing evolution meanwhile offers attractive chances for surveying purposes. These systems integrate a handful of already challenging topics like aviation engineering, sensors, electronics, software, modelling and photogrammetry, which causes a degree of complexity that makes it difficult for outsiders to identify a good product.Therefore a few issues shall be highlighted, which are important for choosing and using these systems in surveying.
PDF-Download
VGI_201311_Gebauer.pdf
VGI_201311_Gebauer.pdf
Schüttvolumenbestimmung einer Zwischenlagerdeponie mit twinGEO-UAVs. Ein Praxisbericht, von der Datengewinnung bis zur Auswertung und Dokumentation
Kurzfassung
Elektrisch betriebene Mini UAVs (Unmanned Aerial Vehicles) sind kostengünstige und leistungsstarke Messinstrumente für die Gewinnung von hochauflösenden GeoDaten. Das System twinGEO bietet eine Komplettlösung für die Erfassung und Auswertung im Bereich der Nahbereichsphotogrammetrie. Am Beispiel einer Zwischenlagerdeponie in Ampass, Tirol wird der gesamte Arbeitsablauf, von der Projektvorbereitung, Flugplanung, Befliegung, photogrammetrischen Auswertung, Volumsberechnungen und Lageplanerstellung aufgezeigt und vom praktischen Standpunkt beurteilt.
Abstract
UAVs (Unmanned Aerial Vehicles) are cost effective survey-tools for the acquisition of high resolution geospatial data.The twinGEO solution provides excellent tools for data acquisition and -exploitation for the whole workflow in close range photogrammetry. For a disposal site in Ampass, Tyrol the workflow of applying this system in collecting aerial images, calculating terrain models, mass calculation and documentation are illustrated and assessed based on practical experience.
Elektrisch betriebene Mini UAVs (Unmanned Aerial Vehicles) sind kostengünstige und leistungsstarke Messinstrumente für die Gewinnung von hochauflösenden GeoDaten. Das System twinGEO bietet eine Komplettlösung für die Erfassung und Auswertung im Bereich der Nahbereichsphotogrammetrie. Am Beispiel einer Zwischenlagerdeponie in Ampass, Tirol wird der gesamte Arbeitsablauf, von der Projektvorbereitung, Flugplanung, Befliegung, photogrammetrischen Auswertung, Volumsberechnungen und Lageplanerstellung aufgezeigt und vom praktischen Standpunkt beurteilt.
Abstract
UAVs (Unmanned Aerial Vehicles) are cost effective survey-tools for the acquisition of high resolution geospatial data.The twinGEO solution provides excellent tools for data acquisition and -exploitation for the whole workflow in close range photogrammetry. For a disposal site in Ampass, Tyrol the workflow of applying this system in collecting aerial images, calculating terrain models, mass calculation and documentation are illustrated and assessed based on practical experience.
Keywords/Schlüsselwörter
UAV-Komplettsystem Photogrammetrie Volumensbestimmung Dokumentation Monitoring
UAV-Komplettsystem Photogrammetrie Volumensbestimmung Dokumentation Monitoring
PDF-Download
VGI_201312_Neuner.pdf
VGI_201312_Neuner.pdf